141 research outputs found

    Increased Expression of Integrin-Linked Kinase Improves Cardiac Function and Decreases Mortality in Dilated Cardiomyopathy Model of Rats

    Get PDF
    AIMS: Integrin-linked kinase (ILK) is a multifunctional kinase linking the extracellular matrix to intracellular signaling pathways, whose activation in the heart gives rise to a number of functional consequences. The aim of this study is to demonstrate the therapeutic and survival benefit of cardiac ILK overexpression in a rat model of dilated cardiomyopathy. METHODS AND RESULTS: The dilated cardiomyopathy model was generated in rats by intraperitoneal administration of six equal doses of doxorubicin over a 2 week period. Five weeks after the first injection, echocardiographic analysis demonstrated impaired cardiac function and, at that point, recombinant adenoviral vector harboring ILK cDNA or vehicle was injected into the myocardium, and the rats re-studied 4 weeks later. Compared with vehicle injection, ILK treatment ameliorated inflammatory cell infiltration and cardiomyocyte degeneration, as well as left ventricular dilation and dysfunction. ILK treatment was also associated with a reduction in apoptosis and an increase in proliferation of cardiomyocytes, as well as decreased oxidative stress and autophagic vacuole accumulation. Importantly, mortality was lower in rats following ILK treatment than in those following vehicle injection. In cultured neonatal rat cardiomyocytes, we also found that ILK overexpression protected against doxorubicin-induced apoptosis, giving rise to an increase in their proliferation. CONCLUSIONS: These data demonstrate for the first time that ILK gene therapy improves cardiac function and survival in a model of dilated cardiomyopathy, and this may be mediated through suppression of inflammation, prevention of ventricular remodeling, inhibition of cardiomyocyte apoptosis and autophagy, and stimulation of cardiomyocyte proliferation

    First measurement of the |t|-dependence of coherent J/ψ photonuclear production

    Get PDF
    The first measurement of the cross section for coherent J/ψ photoproduction as a function of |t|, the square of the momentum transferred between the incoming and outgoing target nucleus, is presented. The data were measured with the ALICE detector in ultra-peripheral Pb–Pb collisions at a centre-of-mass energy per nucleon pair sNN=5.02TeV with the J/ψ produced in the central rapidity region |y|<0.8, which corresponds to the small Bjorken-x range (0.3−1.4)×10−3. The measured |t|-dependence is not described by computations based only on the Pb nuclear form factor, while the photonuclear cross section is better reproduced by models including shadowing according to the leading-twist approximation, or gluon-saturation effects from the impact-parameter dependent Balitsky–Kovchegov equation. These new results are therefore a valid tool to constrain the relevant model parameters and to investigate the transverse gluonic structure at very low Bjorken-x.publishedVersio

    Resolving the strange behavior of extraterrestrial potassium in the upper atmosphere

    Get PDF
    It has been known since the 1960s that the layers of Na and K atoms, which occur between 80 and 105 km in the Earth's atmosphere as a result of meteoric ablation, exhibit completely different seasonal behavior. In the extratropics Na varies annually, with a pronounced wintertime maximum and summertime minimum. However, K varies semiannually with a small summertime maximum and minima at the equinoxes. This contrasting behavior has never been satisfactorily explained. Here we use a combination of electronic structure and chemical kinetic rate theory to determine two key differences in the chemistries of K and Na. First, the neutralization of K+ ions is only favored at low temperatures during summer. Second, cycling between K and its major neutral reservoir KHCO3 is essentially temperature independent. A whole atmosphere model incorporating this new chemistry, together with a meteor input function, now correctly predicts the seasonal behavior of the K layer

    ALICE Collaboration

    Get PDF

    A(c)(+) Production and Baryon-to-Meson Ratios in pp and p-Pb Collisions at root S-NN=5.02 TeV at the LHC

    Get PDF
    The prompt production of the charm baryon \u39bc+ and the \u39bc+/D0 production ratios were measured at midrapidity with the ALICE detector in pp and p-Pb collisions at sNN=5.02 TeV. These new measurements show a clear decrease of the \u39bc+/D0 ratio with increasing transverse momentum (pT) in both collision systems in the range 2<12 GeV/c, exhibiting similarities with the light-flavor baryon-to-meson ratios p/\u3c0 and \u39b/KS0. At low pT, predictions that include additional color-reconnection mechanisms beyond the leading-color approximation, assume the existence of additional higher-mass charm-baryon states, or include hadronization via coalescence can describe the data, while predictions driven by charm-quark fragmentation processes measured in e+e- and e-p collisions significantly underestimate the data. The results presented in this Letter provide significant evidence that the established assumption of universality (colliding-system independence) of parton-to-hadron fragmentation is not sufficient to describe charm-baryon production in hadronic collisions at LHC energies

    A(c)(+) Production and Baryon-to-Meson Ratios in pp and p-Pb Collisions at root S-NN=5.02 TeV at the LHC

    Get PDF
    The prompt production of the charm baryon Λ_{c}^{+} and the Λ_{c}^{+}/D^{0} production ratios were measured at midrapidity with the ALICE detector in pp and p-Pb collisions at sqrt[s_{NN}]=5.02  TeV. These new measurements show a clear decrease of the Λ_{c}^{+}/D^{0} ratio with increasing transverse momentum (p_{T}) in both collision systems in the range 2<p_{T}<12  GeV/c, exhibiting similarities with the light-flavor baryon-to-meson ratios p/π and Λ/K_{S}^{0}. At low p_{T}, predictions that include additional color-reconnection mechanisms beyond the leading-color approximation, assume the existence of additional higher-mass charm-baryon states, or include hadronization via coalescence can describe the data, while predictions driven by charm-quark fragmentation processes measured in e^{+}e^{-} and e^{-}p collisions significantly underestimate the data. The results presented in this Letter provide significant evidence that the established assumption of universality (colliding-system independence) of parton-to-hadron fragmentation is not sufficient to describe charm-baryon production in hadronic collisions at LHC energies

    Suppression in Pb-Pb Collisions at the LHC.

    Get PDF
    The production of the ψ(2S) charmonium state was measured with ALICE in Pb-Pb collisions at sqrt[s_{NN}]=5.02  TeV, in the dimuon decay channel. A significant signal was observed for the first time at LHC energies down to zero transverse momentum, at forward rapidity (2.5<y<4). The measurement of the ratio of the inclusive production cross sections of the ψ(2S) and J/ψ resonances is reported as a function of the centrality of the collisions and of transverse momentum, in the region p_{T}<12  GeV/c. The results are compared with the corresponding measurements in pp collisions, by forming the double ratio [σ^{ψ(2S)}/σ^{J/ψ}]_{Pb-Pb}/[σ^{ψ(2S)}/σ^{J/ψ}]_{pp}. It is found that in Pb-Pb collisions the ψ(2S) is suppressed by a factor of ∌2 with respect to the J/ψ. The ψ(2S) nuclear modification factor R_{AA} was also obtained as a function of both centrality and p_{T}. The results show that the ψ(2S) resonance yield is strongly suppressed in Pb-Pb collisions, by a factor of up to ∌3 with respect to pp. Comparisons of cross section ratios with previous Super Proton Synchrotron findings by the NA50 experiment and of R_{AA} with higher-p_{T} results at LHC energy are also reported. These results and the corresponding comparisons with calculations of transport and statistical models address questions on the presence and properties of charmonium states in the quark-gluon plasma formed in nuclear collisions at the LHC
    • 

    corecore