9 research outputs found

    Managing the gilt pool

    Get PDF
    1 online resource (PDF, 2 pages)This archival publication may not reflect current scientific knowledge or recommendations. Current information available from the University of Minnesota Extension: https://www.extension.umn.edu

    Trichinosis

    Get PDF
    1 online resource (PDF, 4 pages)This archival publication may not reflect current scientific knowledge or recommendations. Current information available from the University of Minnesota Extension: https://www.extension.umn.edu

    Β\u3csub\u3e1\u3c/sub\u3e-Adrenergic Receptor Blockade Attenuates Angiotensin II-Mediated Catecholamine Release Into the Cardiac Interstitium in Mitral Regurgitation

    No full text
    Background - This study tested the hypothesis that β1-adrenoreceptor blockade modulates the angiotensin II (Ang II)-evoked neural release of norepinephrine (NE) and epinephrine (Epi) into the cardiac interstitial fluid (ISF) space in experimentally induced mitral regurgitation (MR) in the dog. Methods and Results - Normal dogs (n=8) were compared with dogs with MR of 2 (n=8) and 4 (n=6) weeks\u27 duration and with dogs with MR treated with β1-receptor blockade (RB; extended-release metoprolol succinate, 100 mg QD; MR+β1-RB) that was started 24 hours after MR induction for 2 (n=6) and 4 weeks (n=8). Left ventricular end-diastolic dimension increased 20% as plasma Ang II levels increased \u3e5-fold in both MR and MR+β1-RB dogs at 2 and 4 weeks. Ang II infusion into the left atrium produced increases in ISF NE and Epi in normal dogs, which were further increased in 2- and 4-week MR dogs but were restored to normal in 4-week MR+β1-RB dogs. Ang II infusion produced 4-fold increases in circulating NE and Epi in 2- and 4-week MR dogs that returned to normal in 4-week+β1-RB dogs. Left ventricular angiotensin-converting enzyme activity and ISF Ang II were increased in 4-week MR dogs but were decreased in 4-week MR+β1-RB dogs. Conclusions - β1-RB decreases renin-angiotensin system sympathostimulation and activation by attenuating the Ang II-mediated NE and Epi release into the cardiac ISF and circulation and by decreasing left ventricular angiotensin-converting enzyme expression in the early phases of volume overload

    Β\u3csub\u3e1\u3c/sub\u3e-Adrenoceptor Blockade Mitigates Excessive Norepinephrine Release Into Cardiac Interstitium in Mitral Regurgitation in Dog

    No full text
    Mitral regurgitation (MR) is associated with increased neuronal release of norepinephrine (NE) and epinephrine (EP) into myocardial interstitial fluid (ISF) that may be necessary in sustaining left ventricular (LV) function via activation of cardiomyocyte β-adrenergic receptors (ARs). However, activation of neuronal β-ARs on cardiac neurons may lead to further catecholamine release, with an attendant risk of functional deterioration. We hypothesize that a beneficial effect of β-AR blockade may therefore mitigate excessive catecholamine release from cardiac adrenergic neurons in dogs with MR. We measured the effects of chronic β-receptor blockade (β-RB) on ISF NE and EP release using in vivo microdialysis in open-chest anesthetized dogs after 4 wk of MR with or without extended release of metoprolol succinate (100 mg/day) as well as in control dogs. Fractional shortening increased by 30% in both MR and MR + β-RB dogs after 4 wk of MR. In MR + β-RB dogs, stellate-stimulated heart rate change was attenuated compared with control and MR dogs, whereas peak change of LV pressure over time (+dP/dt) increased equally in all groups. Stellate-stimulated ISF NE increased fivefold over baseline in MR versus twofold in control dogs (\u3c0.05), but the NE release was significantly attenuated in MR + β-RB dogs. In contrast, stellate-stimulated increases in ISF EP did not differ in control, MR, and MR + β-RB dogs. This study demonstrates that β-RB attenuates ISF NE release from cardiac neurons and that the LV functional response to MR is not dependent on an excess increase in ISF NE. Thus β1-RB may exert a beneficial effect by attenuating untoward effects of excessive sympathetic efferent neural NE release while sustaining early LV functional adaptation to MR

    Biochemie des Nahrungseiweißes

    No full text
    corecore