22 research outputs found

    Phosphazenbasierte Chelatkomplexe der Seltenerdmetalle: Spektroskopie, Struktur und katalytische Reaktivität in nachhaltigen chemischen Prozessen

    Get PDF
    Die Organometallchemie der Seltenerdmetalle (SEM) befindet sich seit nunmehr 40 Jahren in einer rasanten Entwicklung. Die große Hoffnung auf mehr Nachhaltigkeit in der Nutzung unserer begrenzten Rohstoff-Ressourcen beruht unter anderem auf dem katalytischen Potential der SEM. Zu den SEM zählen 17 (Elemente der Gruppe 3 und der Lanthanoide) wenig erforschte und doch nicht so selten vorkommende Metalle des Periodensystems. Diese Arbeit beschäftigte sich mit der Synthese, Struktur, Spektroskopie sowie der gezielten Modifizierung neuartiger, meist paramagnetischer SEM-Komplexe und deren Einsatz in der metallorganischen Katalyse. In der Arbeit konnte gezeigt werden, dass die phosphazenbasierte Iminophosphonamid-(NPN-) und Cyclopentadienyl-phosphazen-(CpPN-)Liganden stabile und gleichzeitig reaktive Komplexe der SEM liefern und interessante Reaktivitätsstudien für die Isolierung katalytisch aktiver Spezies sowie wichtige Katalysen ermöglichen. Ein großer Wert wurde bei der Charakterisierung der Komplexe auf die NMR-Spektroskopie, inklusive der Signalzuordnung der paramagnetischen Komplexe, und Kristallstrukturanalyse gelegt. Die erfolgreichen Katalysen waren die Hydroaminierung von Olefinen, die Polymerisation von Isopren zu synthetischem Kautschuk und die ringöffnende Polymerisation von zyklischen Estern zu biologisch abbaubaren Kunststoffen

    Phosphazenbasierte Chelatkomplexe der Seltenerdmetalle: Spektroskopie, Struktur und katalytische Reaktivität in nachhaltigen chemischen Prozessen

    No full text
    Die Organometallchemie der Seltenerdmetalle (SEM) befindet sich seit nunmehr 40 Jahren in einer rasanten Entwicklung. Die große Hoffnung auf mehr Nachhaltigkeit in der Nutzung unserer begrenzten Rohstoff-Ressourcen beruht unter anderem auf dem katalytischen Potential der SEM. Zu den SEM zählen 17 (Elemente der Gruppe 3 und der Lanthanoide) wenig erforschte und doch nicht so selten vorkommende Metalle des Periodensystems. Diese Arbeit beschäftigte sich mit der Synthese, Struktur, Spektroskopie sowie der gezielten Modifizierung neuartiger, meist paramagnetischer SEM-Komplexe und deren Einsatz in der metallorganischen Katalyse. In der Arbeit konnte gezeigt werden, dass die phosphazenbasierte Iminophosphonamid-(NPN-) und Cyclopentadienyl-phosphazen-(CpPN-)Liganden stabile und gleichzeitig reaktive Komplexe der SEM liefern und interessante Reaktivitätsstudien für die Isolierung katalytisch aktiver Spezies sowie wichtige Katalysen ermöglichen. Ein großer Wert wurde bei der Charakterisierung der Komplexe auf die NMR-Spektroskopie, inklusive der Signalzuordnung der paramagnetischen Komplexe, und Kristallstrukturanalyse gelegt. Die erfolgreichen Katalysen waren die Hydroaminierung von Olefinen, die Polymerisation von Isopren zu synthetischem Kautschuk und die ringöffnende Polymerisation von zyklischen Estern zu biologisch abbaubaren Kunststoffen

    Yttrium Hydride Complex Bearing CpPN/Amidinate Heteroleptic Ligands: Synthesis, Structure, and Reactivity

    No full text
    The reaction of the yttrium dialkyls (C<sub>5</sub>H<sub>4</sub>–PPh<sub>2</sub>N–C<sub>6</sub>H<sub>3</sub><sup><i>i</i></sup>Pr<sub>2</sub>)­Y­(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>2</sub>(thf) (<b>1</b>) with an excess of <i>N</i>,<i>N′</i>-diisopropylcarbodiimide gave the yttrium monoalkyl complex (C<sub>5</sub>H<sub>4</sub>–PPh<sub>2</sub>N–C<sub>6</sub>H<sub>3</sub><sup><i>i</i></sup>Pr<sub>2</sub>)­Y­(CH<sub>2</sub>SiMe<sub>3</sub>)­[<sup><i>i</i></sup>PrNC­(CH<sub>2</sub>SiMe<sub>3</sub>)–N<sup><i>i</i></sup>Pr] (<b>2</b>). <b>2</b> subsequently reacted with 1 equiv of PhSiH<sub>3</sub> to generate the CpPN/amidinate heteroleptic yttrium hydride {(C<sub>5</sub>H<sub>4</sub>–PPh<sub>2</sub>N–C<sub>6</sub>H<sub>3</sub><sup><i>i</i></sup>Pr<sub>2</sub>)­Y­[<sup><i>i</i></sup>PrNC­(CH<sub>2</sub>SiMe<sub>3</sub>)–N<sup><i>i</i></sup>Pr]­(μ-H)}<sub>2</sub> (<b>3</b>). Hydride <b>3</b> showed good reactivity toward various substrates containing unsaturated C–C, C–N, and N–N bonds, such as azobenzene, <i>p</i>-tolyacetylene, 1,4-bis­(trimethylsilyl)-1,3-butanediyne, <i>N</i>,<i>N′</i>-diisopropylcarbodiimide, and 4-dimethylaminopyridine, affording the yttrium hydrazide complex <b>4</b> with a rare η<sup>2</sup>-Cp bonding mode, yttrium terminal alkynyl complex <b>5</b>, yttrium η<sup>3</sup>-propargyl complex <b>6</b>, yttrium amidinate complex <b>7</b>, and yttrium 2-hydro-4-dimethylaminopyridyl product <b>8</b>, respectively

    Yttrium Hydride Complex Bearing CpPN/Amidinate Heteroleptic Ligands: Synthesis, Structure, and Reactivity

    No full text
    The reaction of the yttrium dialkyls (C<sub>5</sub>H<sub>4</sub>–PPh<sub>2</sub>N–C<sub>6</sub>H<sub>3</sub><sup><i>i</i></sup>Pr<sub>2</sub>)­Y­(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>2</sub>(thf) (<b>1</b>) with an excess of <i>N</i>,<i>N′</i>-diisopropylcarbodiimide gave the yttrium monoalkyl complex (C<sub>5</sub>H<sub>4</sub>–PPh<sub>2</sub>N–C<sub>6</sub>H<sub>3</sub><sup><i>i</i></sup>Pr<sub>2</sub>)­Y­(CH<sub>2</sub>SiMe<sub>3</sub>)­[<sup><i>i</i></sup>PrNC­(CH<sub>2</sub>SiMe<sub>3</sub>)–N<sup><i>i</i></sup>Pr] (<b>2</b>). <b>2</b> subsequently reacted with 1 equiv of PhSiH<sub>3</sub> to generate the CpPN/amidinate heteroleptic yttrium hydride {(C<sub>5</sub>H<sub>4</sub>–PPh<sub>2</sub>N–C<sub>6</sub>H<sub>3</sub><sup><i>i</i></sup>Pr<sub>2</sub>)­Y­[<sup><i>i</i></sup>PrNC­(CH<sub>2</sub>SiMe<sub>3</sub>)–N<sup><i>i</i></sup>Pr]­(μ-H)}<sub>2</sub> (<b>3</b>). Hydride <b>3</b> showed good reactivity toward various substrates containing unsaturated C–C, C–N, and N–N bonds, such as azobenzene, <i>p</i>-tolyacetylene, 1,4-bis­(trimethylsilyl)-1,3-butanediyne, <i>N</i>,<i>N′</i>-diisopropylcarbodiimide, and 4-dimethylaminopyridine, affording the yttrium hydrazide complex <b>4</b> with a rare η<sup>2</sup>-Cp bonding mode, yttrium terminal alkynyl complex <b>5</b>, yttrium η<sup>3</sup>-propargyl complex <b>6</b>, yttrium amidinate complex <b>7</b>, and yttrium 2-hydro-4-dimethylaminopyridyl product <b>8</b>, respectively

    Phosphazene-Functionalized Cyclopentadienyl and Its Derivatives Ligated Rare-Earth Metal Alkyl Complexes: Synthesis, Structures, and Catalysis on Ethylene Polymerization

    No full text
    Treatment of Ln­(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>3</sub>(thf)<sub>2</sub> (Ln = Sc, Y, and Lu) with 1 equiv of CpPN-type ligands C<sub>5</sub>H<sub>4</sub>PPh<sub>2</sub>–NH–C<sub>6</sub>H<sub>3</sub>R<sub>2</sub> (R = Me, <b>L<sup>1</sup>(Me)</b>; R = <sup><i>i</i></sup>Pr, <b>L<sup>1</sup>(<sup><i>i</i></sup>Pr)</b>) at room temperature readily generated the corresponding CpPN-type bis­(alkyl) complexes <b>1</b> and <b>2a</b>–<b>2c</b>. Addition of 3 equiv of LiCH<sub>2</sub>SiMe<sub>3</sub> to a mixture of <b>L<sup>1</sup>(<sup><i>i</i></sup>Pr)</b> and LnCl<sub>3</sub>(thf)<sub>2</sub> (Ln = Sm and Nd) also afforded the CpPN-type bis­(alkyl) complexes <b>2d</b> and <b>2e</b>. The Cp moiety bonds to the central metal in a classical η<sup>5</sup> mode in all CpPN-type complexes <b>1</b> and <b>2</b>. In contrast, the Cp<sup>Me</sup>PN-type ligands C<sub>5</sub>Me<sub>4</sub>H–PPh<sub>2</sub>N–C<sub>6</sub>H<sub>3</sub>R<sub>2</sub> (R = Me, <b>L<sup>2</sup>(Me)</b>; R = <sup><i>i</i></sup>Pr, <b>L<sup>2</sup>(<sup><i>i</i></sup>Pr)</b>) behaved differently. <b>L<sup>2</sup>(Me)</b> did not react with Sc­(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>3</sub>(thf)<sub>2</sub>. Similarly, <b>L<sup>2</sup>(<sup><i>i</i></sup>Pr)</b> was also inert to Sc­(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>3</sub>(thf)<sub>2</sub> even at 50 °C. When the central metal was changed to yttrium, however, the equimolar reaction between Y­(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>3</sub>(thf)<sub>2</sub> and <b>L<sup>2</sup>(<sup><i>i</i></sup>Pr)</b> in the presence of LiCl afforded two bis­(alkyl) complexes <b>3a</b> and <b>3b</b>. In the main product <b>3a</b>, [C<sub>5</sub>HMe<sub>3</sub>(η<sup>3</sup>-CH<sub>2</sub>)–PPh<sub>2</sub>N–C<sub>6</sub>H<sub>3</sub><sup><i>i</i></sup>Pr<sub>2</sub>]­Y­(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>2</sub>(thf), the ligand bonds to the Y<sup>3+</sup> ion in a rare η<sup>3</sup>-allyl/κ-N mode, whereas in <b>3b</b>, <b>(</b>C<sub>5</sub>Me<sub>4</sub>–PPh<sub>2</sub>N–C<sub>6</sub>H<sub>3</sub><sup><i>i</i></sup>Pr<sub>2</sub>)­Y­(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>2</sub>(LiCl)­(thf), the Cp ring coordinates to the Y<sup>3+</sup> ion in an η<sup>5</sup> mode, and a LiCl unit is located between the Y<sup>3+</sup> ion and the nitrogen atom. When the central metal was changed to lutetium, a bis­(alkyl) complex <b>4a</b>, [C<sub>5</sub>HMe<sub>3</sub>(η<sup>3</sup>-CH<sub>2</sub>)–PPh<sub>2</sub>N–C<sub>6</sub>H<sub>3</sub><sup><i>i</i></sup>Pr<sub>2</sub>]­Lu­(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>2</sub>(thf), and a bis­(alkyl) complex <b>4b</b>, (C<sub>5</sub>Me<sub>4</sub>–PPh<sub>2</sub>N–C<sub>6</sub>H<sub>3</sub><sup><i>i</i></sup>Pr<sub>2</sub>)­Lu­(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>2</sub>, were isolated. The protonolysis reaction of the IndPN-type ligands C<sub>9</sub>H<sub>7</sub>–PPh<sub>2</sub>N–C<sub>6</sub>H<sub>3</sub>R<sub>2</sub> (R = Me, <b>L<sup>3</sup>(Me)</b>; R = Et, <b>L<sup>3</sup>(Et)</b>; R = <sup><i>i</i></sup>Pr, <b>L<sup>3</sup>(<sup><i>i</i></sup>Pr)</b>) with Ln­(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>3</sub>(thf)<sub>2</sub> (Ln = Sc, Y, and Lu) generated the IndPN-type bis­(alkyl) complexes <b>5a</b>–<b>5c</b>, <b>6</b>, and <b>7a</b>–<b>7c</b>, selectively, where the Ind moiety tends to adopt an η<sup>3</sup>-bonding fashion. The more bulky FluPN-type ligands C<sub>13</sub>H<sub>9</sub>–PPh<sub>2</sub>N–C<sub>6</sub>H<sub>4</sub>R (R = H, <b>L<sup>4</sup>(H)</b>; R = Me, <b>L<sup>4</sup>(Me)</b>) were treated with Ln­(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>3</sub>(thf)<sub>2</sub> (Ln = Sc and Lu) to afford the FluPN-type bis­(alkyl) complexes <b>8</b> and <b>9a</b> and <b>9b</b>, where the Flu moiety has a rare η<sup>1</sup>-bonding mode. Complexes <b>1</b>–<b>9</b> were fully characterized by <sup>1</sup>H, <sup>13</sup>C, and <sup>31</sup>P NMR; X-ray; and elemental analyses. Upon activation with AlR<sub>3</sub> and [Ph<sub>3</sub>C]­[B­(C<sub>6</sub>F<sub>5</sub>)<sub>4</sub>], the scandium complexes showed good to high catalytic activity for ethylene polymerization. The effects of the sterics and electronics of the ligand, the loading and the type of AlR<sub>3</sub>, the polymerization temperature, and the polymerization time on the catalytic activity were also discussed

    Phosphazene-Functionalized Cyclopentadienyl and Its Derivatives Ligated Rare-Earth Metal Alkyl Complexes: Synthesis, Structures, and Catalysis on Ethylene Polymerization

    No full text
    Treatment of Ln­(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>3</sub>(thf)<sub>2</sub> (Ln = Sc, Y, and Lu) with 1 equiv of CpPN-type ligands C<sub>5</sub>H<sub>4</sub>PPh<sub>2</sub>–NH–C<sub>6</sub>H<sub>3</sub>R<sub>2</sub> (R = Me, <b>L<sup>1</sup>(Me)</b>; R = <sup><i>i</i></sup>Pr, <b>L<sup>1</sup>(<sup><i>i</i></sup>Pr)</b>) at room temperature readily generated the corresponding CpPN-type bis­(alkyl) complexes <b>1</b> and <b>2a</b>–<b>2c</b>. Addition of 3 equiv of LiCH<sub>2</sub>SiMe<sub>3</sub> to a mixture of <b>L<sup>1</sup>(<sup><i>i</i></sup>Pr)</b> and LnCl<sub>3</sub>(thf)<sub>2</sub> (Ln = Sm and Nd) also afforded the CpPN-type bis­(alkyl) complexes <b>2d</b> and <b>2e</b>. The Cp moiety bonds to the central metal in a classical η<sup>5</sup> mode in all CpPN-type complexes <b>1</b> and <b>2</b>. In contrast, the Cp<sup>Me</sup>PN-type ligands C<sub>5</sub>Me<sub>4</sub>H–PPh<sub>2</sub>N–C<sub>6</sub>H<sub>3</sub>R<sub>2</sub> (R = Me, <b>L<sup>2</sup>(Me)</b>; R = <sup><i>i</i></sup>Pr, <b>L<sup>2</sup>(<sup><i>i</i></sup>Pr)</b>) behaved differently. <b>L<sup>2</sup>(Me)</b> did not react with Sc­(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>3</sub>(thf)<sub>2</sub>. Similarly, <b>L<sup>2</sup>(<sup><i>i</i></sup>Pr)</b> was also inert to Sc­(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>3</sub>(thf)<sub>2</sub> even at 50 °C. When the central metal was changed to yttrium, however, the equimolar reaction between Y­(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>3</sub>(thf)<sub>2</sub> and <b>L<sup>2</sup>(<sup><i>i</i></sup>Pr)</b> in the presence of LiCl afforded two bis­(alkyl) complexes <b>3a</b> and <b>3b</b>. In the main product <b>3a</b>, [C<sub>5</sub>HMe<sub>3</sub>(η<sup>3</sup>-CH<sub>2</sub>)–PPh<sub>2</sub>N–C<sub>6</sub>H<sub>3</sub><sup><i>i</i></sup>Pr<sub>2</sub>]­Y­(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>2</sub>(thf), the ligand bonds to the Y<sup>3+</sup> ion in a rare η<sup>3</sup>-allyl/κ-N mode, whereas in <b>3b</b>, <b>(</b>C<sub>5</sub>Me<sub>4</sub>–PPh<sub>2</sub>N–C<sub>6</sub>H<sub>3</sub><sup><i>i</i></sup>Pr<sub>2</sub>)­Y­(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>2</sub>(LiCl)­(thf), the Cp ring coordinates to the Y<sup>3+</sup> ion in an η<sup>5</sup> mode, and a LiCl unit is located between the Y<sup>3+</sup> ion and the nitrogen atom. When the central metal was changed to lutetium, a bis­(alkyl) complex <b>4a</b>, [C<sub>5</sub>HMe<sub>3</sub>(η<sup>3</sup>-CH<sub>2</sub>)–PPh<sub>2</sub>N–C<sub>6</sub>H<sub>3</sub><sup><i>i</i></sup>Pr<sub>2</sub>]­Lu­(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>2</sub>(thf), and a bis­(alkyl) complex <b>4b</b>, (C<sub>5</sub>Me<sub>4</sub>–PPh<sub>2</sub>N–C<sub>6</sub>H<sub>3</sub><sup><i>i</i></sup>Pr<sub>2</sub>)­Lu­(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>2</sub>, were isolated. The protonolysis reaction of the IndPN-type ligands C<sub>9</sub>H<sub>7</sub>–PPh<sub>2</sub>N–C<sub>6</sub>H<sub>3</sub>R<sub>2</sub> (R = Me, <b>L<sup>3</sup>(Me)</b>; R = Et, <b>L<sup>3</sup>(Et)</b>; R = <sup><i>i</i></sup>Pr, <b>L<sup>3</sup>(<sup><i>i</i></sup>Pr)</b>) with Ln­(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>3</sub>(thf)<sub>2</sub> (Ln = Sc, Y, and Lu) generated the IndPN-type bis­(alkyl) complexes <b>5a</b>–<b>5c</b>, <b>6</b>, and <b>7a</b>–<b>7c</b>, selectively, where the Ind moiety tends to adopt an η<sup>3</sup>-bonding fashion. The more bulky FluPN-type ligands C<sub>13</sub>H<sub>9</sub>–PPh<sub>2</sub>N–C<sub>6</sub>H<sub>4</sub>R (R = H, <b>L<sup>4</sup>(H)</b>; R = Me, <b>L<sup>4</sup>(Me)</b>) were treated with Ln­(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>3</sub>(thf)<sub>2</sub> (Ln = Sc and Lu) to afford the FluPN-type bis­(alkyl) complexes <b>8</b> and <b>9a</b> and <b>9b</b>, where the Flu moiety has a rare η<sup>1</sup>-bonding mode. Complexes <b>1</b>–<b>9</b> were fully characterized by <sup>1</sup>H, <sup>13</sup>C, and <sup>31</sup>P NMR; X-ray; and elemental analyses. Upon activation with AlR<sub>3</sub> and [Ph<sub>3</sub>C]­[B­(C<sub>6</sub>F<sub>5</sub>)<sub>4</sub>], the scandium complexes showed good to high catalytic activity for ethylene polymerization. The effects of the sterics and electronics of the ligand, the loading and the type of AlR<sub>3</sub>, the polymerization temperature, and the polymerization time on the catalytic activity were also discussed
    corecore