85 research outputs found

    Analysis of Brassica oleracea early stage abiotic stress responses reveals tolerance in multiple crop types and for multiple sources of stress

    Get PDF
    BACKGROUND Brassica oleracea includes a number of important crop types such as cabbage, cauliflower, broccoli and kale. Current climate conditions and weather patterns are causing significant losses in these crops, meaning that new cultivars with improved tolerance of one or more abiotic stress types must be sought. In this study, genetically fixed B. oleracea lines belonging to a Diversity Fixed Foundation Set (DFFS) were assayed for their response to seedling stage-imposed drought, flood, salinity, heat and cold stress. RESULTS Significant (P ≀ 0.05) variation in stress tolerance response was found for each stress, for each of four measured variables (relative fresh weight, relative dry weight, relative leaf number and relative plant height). Lines tolerant to multiple stresses were found to belong to several different crop types. There was no overall correlation between the responses to the different stresses. CONCLUSION Abiotic stress tolerance was identified in multiple B. oleracea crop types, with some lines exhibiting resistance to multiple stresses. For each stress, no one crop type appeared significantly more or less tolerant than others. The results are promising for the development of more environmentally robust lines of different B. oleracea crops by identifying tolerant material and highlighting the relationship between responses to different stresses. © 2017 Society of Chemical Industr

    Tipburn resilience in lettuce (Lactuca spp.) – the importance of germplasm resources and production system‐specific assays

    Get PDF
    BACKGROUND Tipburn is a physiological disorder of lettuce (Lactuca spp.). It causes discoloration and collapse of leaf margins, leading to unsaleable crops in both protected (glasshouse, hydroponic) and outdoor production systems. The occurrence of tipburn is hard to predict and is sensitive to environmental conditions. Phenotyping for tipburn resilience requires diverse germplasm resources and, to date, limited material has been investigated for this condition. RESULTS Using a Lactuca diversity fixed foundation set (DFFS) under glasshouse conditions, we identified a significant (P < 0.001) genotypic effect on tipburn resilience across both the entire population and across lines belonging to the cultivated species L. sativa alone. Latuca sativa lines exhibited significantly (P < 0.05) higher average tipburn severity than those belonging to the wild species L. saligna, L. serriola, and L. virosa but we were able to identify both cultivated and wild tipburn-resilient lines. Leaf morphology factors, which included pigmentation, width, and serration, also significantly (P < 0.05) influenced tipburn resilience. Using a recombinant inbred line (RIL) mapping population derived from two DFFS lines, different small-effect quantitative trait loci (QTLs) accounting for 12.3% and 25.2% of total tipburn variation were identified in glasshouse and field conditions, respectively. CONCLUSIONS These results reflect the advantages of phenotyping under production-system-specific conditions for the examination of environmentally sensitive traits and highlight genetic markers and germplasm resources for the development of tipburn resilient lines for use in both protected and outdoor lettuce production

    Addressing the threat of climate change to agriculture requires improving crop resilience to short-term abiotic stress

    Get PDF
    Climate change represents a serious threat to global agriculture, necessitating the development of more environmentally resilient crops to safeguard the future of food production. The effects of climate change are appearing to include a higher frequency of extreme weather events and increased day-to-day weather variability. As such, crops which are able to cope with short-term environmental stress, in addition to those that are tolerant to longer term stress conditions are required . It is becoming apparent that the hitherto relatively little studied process of post-stress plant recovery could be key to optimizing growth and production under fluctuating conditions with intermittent transient stress events. Developing more durable crops requires the provision of genetic resources to identify useful traits through the development of screening protocols. Such traits can then become the objective of crop breeding programmes. In this study, we discuss these issues and outline example research in leafy vegetables that is investigating resilience to short-term abiotic stress

    Mirror Symmetry and Other Miracles in Superstring Theory

    Get PDF
    The dominance of string theory in the research landscape of quantum gravity physics (despite any direct experimental evidence) can, I think, be justified in a variety of ways. Here I focus on an argument from mathematical fertility, broadly similar to Hilary Putnam's 'no miracles argument' that, I argue, many string theorists in fact espouse. String theory leads to many surprising, useful, and well-confirmed mathematical 'predictions' - here I focus on mirror symmetry. These predictions are made on the basis of general physical principles entering into string theory. The success of the mathematical predictions are then seen as evidence for framework that generated them. I attempt to defend this argument, but there are nonetheless some serious objections to be faced. These objections can only be evaded at a high (philosophical) price.Comment: For submission to a Foundations of Physics special issue on "Forty Years Of String Theory: Reflecting On the Foundations" (edited by G. `t Hooft, E. Verlinde, D. Dieks and S. de Haro)

    Effects of Diabetes and Insulin on α-amylase Messenger RNA Levels in Rat Parotid Glands

    Full text link
    Previous studies have shown that amylase levels are reduced significantly in the pancreas and parotid gland of diabetic rats and that insulin reverses this effect and increases the secretory protein levels. In the pancreas, these changes in amylase protein levels are accompanied by parallel changes in amylase mRNA levels. In the present study, the effects of diabetes and subsequent insulin treatments on contents (per cell) of amylase protein and its mRNA in parotid glands were compared in rats rendered diabetic with an injection of a beta-cell toxin, streptozotocin (STZ). Both amylase protein and its mRNA contents were reduced significantly in diabetic rats, compared with control rats, and this reduction was reversed following insulin injections of diabetic rats. In insulin-injected diabetic rats, amylase protein contents increased before a detectable increase in amylase mRNA levels was seen. The mRNA contents of a non-secretory protein, actin, did not change during diabetogenesis or subsequent insulin treatments. The reductions in parotid contents of amylase and its mRNA in diabetic rats and the reversal of these changes by insulin are similar to those changes that occur in the pancreas under the same conditions. However, the magnitude of these changes in parotid glands was much smaller than in the pancreas, and the effect of insulin on amylase mRNA synthesis was not as immediate as in the latter gland.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/67977/2/10.1177_00220345900690081001.pd

    On the use of double cross-validation for the combination of proteomic mass spectral data for enhanced diagnosis and prediction

    Full text link
    International audienceWe consider a proteomic mass spectrometry case-control study for the calibration of a diagnostic rule for the detection of early-stage breast cancer. For each patient, a pair of two distinct mass spectra is recorded, each of which derived from a different prior fractionation procedure on the available patient serum. We propose a procedure to combine the distinct spectral expressions from patients for the calibration of a diagnostic discriminant rule. This is achieved by first calibrating two distinct prediction rules separately, each of which on only one of the two available spectral data sources. A double cross-validatory approach is used to summarize the available spectral data using the two classifiers to posterior class probabilities, on which a combined predictor can be calibrated

    Exclusive electroproduction of J/psi mesons at HERA

    Get PDF
    The exclusive electroproduction of J/psi mesons, ep->epJ/psi, has been studied with the ZEUS detector at HERA for virtualities of the exchanged photon in the ranges 0.15<Q^2<0.8 GeV^2 and 2<Q^2<100 GeV^2 using integrated luminosities of 69 pb^-1 and 83 pb^-1, respectively.The photon-proton centre-of-mass energy was in the range 30<W<220 GeV and the squared four-momentum transfer at the proton vertex |t|<1.The cross sections and decay angular distributions are presented as functions of Q^2, W and t. The effective parameters of the Pomeron trajectory are in agreement with those found in J/psi photoproduction. The spin-density matrix elements, calculated from the decay angular distributions, are consistent with the hypothesis of s-channel helicity conservation. The ratio of the longitudinal to transverse cross sections, sigma_L/sigma_T, grows with Q^2, whilst no dependence on W or t is observed. The results are in agreement with perturbative QCD calculations and exhibit a strong sensitivity to the gluon distribution in the proton.Comment: 33 pages, 10 figures. Submitted to Nuclear Physics

    Deep inelastic inclusive and diffractive scattering at Q2Q^2 values from 25 to 320 GeV2^2 with the ZEUS forward plug calorimeter

    Get PDF
    Deep inelastic scattering and its diffractive component, ep→eâ€Čγ∗p→eâ€ČXNep \to e^{\prime}\gamma^* p \to e^{\prime}XN, have been studied at HERA with the ZEUS detector using an integrated luminosity of 52.4 pb−1^{-1}. The MXM_X method has been used to extract the diffractive contribution. A wide range in the centre-of-mass energy WW (37 -- 245 GeV), photon virtuality Q2Q^2 (20 -- 450 GeV2^2) and mass MXM_X (0.28 -- 35 GeV) is covered. The diffractive cross section for 2<MX<152 < M_X < 15 GeV rises strongly with WW, the rise becoming steeper as Q2Q^2 increases. The data are also presented in terms of the diffractive structure function, F2D(3)F^{\rm D(3)}_2, of the proton. For fixed Q2Q^2 and fixed MXM_X, \xpom F^{\rm D(3)}_2 shows a strong rise as \xpom \to 0, where \xpom is the fraction of the proton momentum carried by the Pomeron. For Bjorken-x<1⋅10−3x < 1 \cdot 10^{-3}, \xpom F^{\rm D(3)}_2 shows positive log⁥Q2\log Q^2 scaling violations, while for x≄5⋅10−3x \ge 5 \cdot 10^{-3} negative scaling violations are observed. The diffractive structure function is compatible with being leading twist. The data show that Regge factorisation is broken.Comment: 89 pages, 27 figure

    Swimming speed of three species of Alexandrium as determined by digital in-line holography.

    Get PDF
    Digital in-line holographic (DIH) microscopy was used to track motility in several related species of the marine dinoflagellate Alexandrium in response to temperature after acclimation at selected temperatures. Numerical reconstruction of DIH holograms yielded high-contrast three-dimensional images of the trajectories of many motile cells swimming simultaneously throughout the sample volume. Swimming speed and trajectory were determined for clonal isolates of A. ostenfeldii, A. minutum and A. tamarense within the temperature range from 8 to 24\ub0C. The strains of these species revealed differences in temperature optima for growth and tolerance that were a function of both acclimation responses and genetic factors reflecting the origin of the isolates. The fastest swimming speeds were recorded at 24\ub0C for cells of A. minutum. Acclimated strains of all three species swam significantly slower at lower temperatures, although fastest swimming speeds did not always occur at temperature optima for growth. Aged cells from stationary phase cultures swam more slowly than cells in exponential growth phase. Doublets from a rapidly dividing culture swam faster than singlets from the same culture, confirming the propulsive advantage of paired cells. Holographic microscopy is a powerful tool for the acquisition of detailed observations of swimming behaviour of microalgal cells in the form of three-dimensional trajectories over the appropriate temporal (sub-second) and spatial (micrometer) scales.Peer reviewed: NoNRC publication: Ye
    • 

    corecore