Addressing the threat of climate change to agriculture requires improving crop resilience to short-term abiotic stress

by Beacham, A.M., Hand, P. and Barker, G.C., Denby, K.J., Teakle, G.R., Walley, P.G. and Monaghan, J.M.

Copyright, Publisher and Additional Information: This is the author accepted manuscript. The final published version (version of record) is available online via Sage Journals.

Please refer to any applicable terms of use of the publisher.

DOI: https://doi.org/10.1177/0030727018807722

Beacham, A.M., Hand, P. and Barker, G.C., Denby, K.J., Teakle, G.R., Walley, P.G. and Monaghan, J.M. 2018. Addressing the threat of climate change to agriculture requires improving crop resilience to short-term abiotic stress. *Outlook on Agriculture*.

REVIEW/COMMENTARY

CORRESPONDING AUTHOR:

Andrew M Beacham, Fresh Produce Research Centre, Crop and Environment Sciences Department, Harper Adams University, Edgmond, Shropshire, TF10 8NB, UK. Email: abeacham@harper-adams.ac.uk.

TITLE

Addressing the Threat of Climate Change to Agriculture Requires Improving Crop Resilience to Short-Term Abiotic Stress

AUTHORS

Andrew M Beacham¹, Paul Hand¹, Guy C Barker², Katherine J Denby³, Graham R Teakle², Peter G Walley⁴ and James M Monaghan¹

¹The Fresh Produce Research Centre, Crop and Environment Sciences Department, Harper Adams University, Edgmond, Shropshire, TF10 8NB, UK.

²Warwick Crop Centre, University of Warwick, Wellesbourne, Warwickshire, CV35 9EF, UK.

³Department of Biology, University of York, Heslington, York YO10 5DD, UK.

⁴Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK.

The authors declare no conflict of interest.

Addressing the Threat of Climate Change to Agriculture Requires Improving Crop

Resilience to Short-Term Abiotic Stress

Abstract: Climate change represents a serious threat to global agriculture, necessitating the

development of more environmentally-resilient crops in order to safeguard the future of food

production. The effects of climate change are appearing to include a higher frequency of

extreme weather events and increased day-to-day weather variability. As such, crops which

are able to cope with short-term environmental stress, in addition to those that are tolerant to

longer term stress conditions are required. It is becoming apparent that the hitherto relatively

little-studied process of post-stress plant recovery could be key to optimising growth and

production under fluctuating conditions with intermittent transient stress events. Developing

more durable crops requires methodologies such as the provision of genetic resources in

which to identify useful traits through the development of screening protocols. Such traits

can then be incorporated into crop breeding programmes. Here we discuss these issues and

outline example research in leafy vegetables that is investigating resilience to short-term

abiotic stress.

Keywords: Climate, abiotic stress, transient, resilience, recovery, leafy vegetables, lettuce,

spinach

2

Introduction

The effects of climate change represent a serious problem for the future of agriculture (Abou-Hussain, 2012) and a risk to global food production systems and availability (Wheeler and von Braun, 2013). It is expected that climate change will impact significantly on crop production (Rosenzweig *et al*, 2014) by altering plant physiology, reducing yield and negatively impacting product quality (Abou-Hussain, 2012; Bisbis *et al*, 2018; Collier *et al*, 2014). Here we discuss leafy vegetable crops as an example. These crops are widely grown and important commodities that represent a rich source of phytonutrients not supplied by cereals, with 71.3 m, 26.8 m and 26.7 m tonnes of vegetable brassicas (*Brassica oleracea*), lettuce (*Lactuca sativa*) and spinach (*Spinacia oleracea*) produced globally in 2016, respectively (Food and Agriculture Organization of the United Nations, 2018). The high water content of leafy crops such as lettuce (around 95%), means that a loss of around 5% fresh weight due to reduced water content can affect product appearance and saleability (Atkinson, 2010). Such leafy vegetable crops are therefore highly sensitive to variation in water availability and temperature and represent a key target for improvement in abiotic (environmental) stress resilience.

Increasing crop stress resilience is critical for maintaining agricultural productivity (Zhu, 2016). Predicting the result of the effects of climate change on crop yields is difficult and depends on a number of factors including the crop simulation model used (Kumar, 2016), crop type, geographic region (lizumi *et al*, 2017; Zhao *et al*, 2017) and abiotic stress type. However, it has been predicted that yields of crops such as wheat, rice, maize and soybean would decline on average by 6.0%, 3.2%, 7.4% and 3.1%, respectively, for each degree Celsius increase in global mean temperature (Zhao *et al*, 2017). The effect of climate change on yields of vegetables and legumes has recently been reviewed (Scheelbeek et al., 2018). This systematic review study revealed expected reductions in vegetable yields in response to predicted changes in environmental conditions, for example, an average yield reduction of 34.7% for a 50% decrease in water availability and a yield reduction of 31.5% for a 4°C increase in temperature above a baseline of 20°C, despite potential beneficial effects arising

from increased atmospheric CO₂ concentration. Increasing crop abiotic stress resilience, for example through the generation of new, more climatically-resilient varieties (Scheelbeek et al., 2018), is therefore key in minimising future yield declines.

A large amount of research is underway that aims to develop crops with increased resilience to environmental conditions. This may be performed by genetic modification or, more commonly, through conventional breeding approaches, in order to generate or accumulate genetic components that heighten the resilience of a crop to one or more sources of abiotic stress (examples in Table 1.). The identification and selection of stress-resilient lines is therefore important for providing useful genetic material for breeding programmes developing cultivars with future durability (Bisbis et al, 2018). The relatively short production cycles of many vegetable crops, for example three weeks for babyleaf spinach and eight weeks for kale (Brassica oleracea var. acephala), means that multiple plantings are made in a growing season. In temperate production areas, where weather patterns change through the growing season, early and late season plantings may experience cold temperatures and heavy rain whereas the mid-season crops may experience high temperatures and drought. Therefore, the development of lines that are resilient to multiple stresses would be additionally advantageous in developing climatically resilient varieties that can grow well throughout the production season.

Table 1. Examples of weather events/ patterns encountered by crops and their associated abiotic (environmental) stresses.

Weather pattern / environmental event	Associated abiotic stress
High rainfall	Waterlogging, nutrient leaching
Low rainfall	Drought, soil salinization, oxidative stress
Snow	Freezing, reduced irradiance, waterlogging during thaw
Low temperature	Freezing
High temperature	Heat stress, drought, oxidative stress
Sea water ingress	Salinization of root zone, waterlogging
High light intensity	Oxidative stress

Short-Term and Long-Term Environmental Stress

Studies of crop abiotic stress resilience can help to determine their response to long-term or chronic sources of stress that are encountered throughout or periodically during the growing season. However global produce is not only subject to gradual long-term climatic changes. It is becoming increasingly clear that the climate is responsible for affecting weather patterns and that an escalating frequency of extreme weather events such as drought, heatwaves and flooding caused by torrential rainfall are occurring (Huber and Gulledge, 2011). The UK Climate Change Risk Assessment 2017 indicated that recent severe and sustained rainfall events in the UK are consistent with climate change predictions (Committee on Climate Change, 2017), while in the US, unusually hot summer days and nights and tropical cyclones are increasing in frequency, with flooding additionally increasing in severity and frequency in some areas (United States Environmental Protection Agency, 2018). Furthermore, evidence is emerging that climate change is also altering day-to-day weather patterns (Medvigy and Beaulieu, 2011) meaning that, in addition to extreme events, crops are subject to larger shortterm fluctuations in irradiance, temperature and water availability. In the US, more precipitation is now falling as part of intense single-day events (United States Environmental Protection Agency, 2018). Furthermore, certain weather types such as hail can have a catastrophic impact on crops such as vegetables. Extreme weather events and day-to-day weather variability have distinct impacts upon processes such as photosynthesis and it is thought that the effects of short-term weather variability could be as dramatic as those resulting from long term climate change (Medvigy and Beaulieu, 2011). These challenges, together with additional sources of abiotic stress such as nutrient deficiency, are leading to large-scale crop losses and so causing unpredictability in production scheduling in a large range of species. Low abiotic stress resilience in existing crop varieties could lead to short-term variability in food supplies, placing food production systems at risk (Wheeler and von Braun, 2013). It is important therefore to investigate means to increase crop resilience to short-term sources of stress arising from transient fluctuations in the growing environment of the crop. Furthermore,

the response of the crop to a particular short-term abiotic stress will likely depend upon, amongst other factors, the severity and duration of the stress (for example, waterlogging stress in lettuce (Nobre *et al*, 2009)) and its interaction with the crop growth stage (for example, growth inhibition of cabbage (*B. oleracea* var. *capitata*) seedlings by salinity stress (Fölster and Heinsch, 1987))§, reflecting the differing ability of plants of different sizes to cope with stress events of varying magnitude and duration. This necessitates the investigation of resilience to different degrees of abiotic stress applied at different stages in the crop growth cycle.

An additional source of short-term environmental stress that is particularly relevant to vegetable crops such as lettuce and brassicas is that of transplantation into the field. In the UK and other countries, these crops are commonly sown indoors in multicellular trays to produce seedlings, which, together with the accompanying small volume of growth medium, are termed transplants. Once the seedlings reach the required growth stage, usually around the emergence of 3-4 true leaves, they are hardened off and planted in the field. Despite the best efforts of growers, transplantation is an environmentally stressful stage for crop seedlings as they adapt to outdoor conditions and must become rapidly established in the field.

Plant Stress Responses

Plants respond to different sources of stress using a combination of unique and overlapping signalling mechanisms (recently reviewed by Zhu, 2016). These include primary stress signals responding to initial stress detection and secondary signals in response to the downstream effects of stress such as cellular damage. Signalling is initiated through the detection of changes in a number of different cellular components including cell walls, organelles, metabolites and protein misfolding. It is mediated via protein phosphorylation cascades, hormonal changes, lipids, calcium ions, nitric oxide and other signals and leads to changes in gene expression, metabolism and physiology, such as control of stomatal aperture, which in

turn affect plant growth and development. Signals can spread throughout the plant, alerting the whole organism to a localised issue, a process known as systemic signalling. Additional components of molecular stress response networks are regularly described. Recent studies have highlighted, for example, the newly defined role of brassinosteroid hormones in inducing CBF transcription factors and downstream cold-responsive *COR* genes in *Arabidopsis* (Eremina *et al.*, 2016); the role of aquaporins and Stress-Associated Proteins (SAPs) in *Arabidopsis* stress responses (Dixit *et al.*, 2018; Feng *et al.*, 2018) and the role of *SGT1* genes and carotenoid metabolism in *B. oleracea* stress responses (Kim *et al.*, 2016; Shanmugam *et al.*, 2016). Such responses tend to occur very rapidly in order to allow the plant to quickly respond to changes in the growth environment. As organisms which cannot move to escape sources of stress, these rapid responses are essential for coping with environmental changes. Stress response signals can also lead to long term adaptation to a new set of environmental conditions, providing tolerance that is useful when a plant is encountering a long-term period of stress, for example activation of cold acclimation (Eremina *et al.*, 2016).

Response to Multiple Simultaneous Stresses

In the field, multiple abiotic stress types may occur sequentially or simultaneously, generating an important challenge for crop production that requires the analysis of stress combinations (Pandey *et al*, 2015). Indeed, some stresses can be hard to separate under field conditions. Under high temperature, for example, decreased relative humidity of the air can also lead to the triggering of water deficit responses (Georgii *et al.*, 2017). This is another new and emerging area of research which now requires investigation in crop species (Pandey *et al*, 2015).

Responses to single stresses show a mixture of unique (e.g. the regulation of ice formation in chilling stress) and shared processes (for example, reactive oxygen species (ROS) production, calcium, phytohormone and MAP kinase signalling pathways), which underlie

general physiological adaptations that can protect against multiple individual stresses, for example osmoprotectant accumulation, stomatal closure in response to drought or salinity and changes in transport and compartmentation of ions in response to heat or salinity stress. In addition to shared and additive responses, such as found for drought and salinity stress in cabbage (Sahin et al, 2018), responses to stress combinations can also be distinct from those for individual stresses (Pandey et al, 2015). For example, Arabidopsis accumulates sucrose under combined heat and drought stress rather than proline (Rizhsky et al, 2004) and exhibits combination-specific interaction effects relating to protein folding and growth inhibition (Georgii et al., 2017). This generates difficulty in predicting the response of a particular plant to combinations of stresses (Shaar-Moshe et al., 2017). Indeed, in tomato (Solanum lycopersicum) it has been found that the single and combined stress responses of different cultivars do not necessarily correlate (Zhou et al., 2017). Responses to commonly occurring combined stresses such as heat and drought can also represent contrasting stress response requirements: stomatal closure to preserve leaf water content under drought stress would appear antagonistic to increased transpiration in order to cool leaves during heat stress. In this case, Arabidopsis plants close their stomata and instead regulate leaf temperature through changes in leaf orientation (Vile et al, 2012), while tomato plants show a predominant effect of drought over heat stress (Zhou et al.,2017).

Different and overlapping sets of gene expression changes occur, for example, in response to heat, drought and a combination of the two (Rizhsky et al., 2004; Georgii et al., 2017; Jia et al., 2017). Indeed, it has been found in *Arabidopsis* and *Brachypodium dystachion*, that only 35-40% of differentially expressed genes from single stress responses can be identified in responses to combined stresses (Shaar-Moshe et al., 2017; Rasmussen et al., 2013), with transcriptome responses to stress combination being suggested to be as unique as those to single stresses (Humbert et al., 2013). In each case, different sets of enzymes, such as those involved in ROS detoxification, are expressed. Shared responses include genes for metabolic processes, such as those encoding chaperones, transferases, hydrolases, oxidoreductases,

heat shock proteins and enzymes for photosynthesis and glycolysis. Genes expressed exclusively under stress combinations include WRKY transcription factors. Indeed, as many aspects of stress responses are under transcriptional control, transcription factors could represent good targets for improving crop stress resilience (Zhang et al., 2004). Despite frequently occurring in the field, cross talk and antagonism in plant hormonal responses to multiple stresses is also important, yet less understood than hormonal responses to single stresses (Nguyen et al, 2016). Abscisic acid (ABA) is a key regulator of abiotic stress responses due to its involvement in processes including stomatal closure, shoot and root growth, but interactions with a number of other hormones including jasmonic acid (JA) and salicylic acid (SA) are also likely to be important. In some studies, it has been found that whilst genes whose expression is common to multiple single stresses tend to belong to known stress response pathways, those expressed in a combination-specific manner are enriched for unique processes and genes of unknown function (Shaar-Moshe et al., 2017). This indicates that the study of combined stress responses may provide a means to discover previously unknown stress response pathways.

Recovery from Stress Events

Studies of plant stress are revealing that the recovery stage is an important aspect of plant environmental responses. During drought stress, for example, many plants begin to close their stomata to preserve leaf water content, however, doing so limits gas exchange and impacts negatively upon photosynthesis. Such stress responses help plants to survive harsh conditions but usually do not allow optimal growth under normal conditions. For a plant subject to short-term stress events interspersed with more favourable growing conditions, the ability to not only respond rapidly to the onset of stress but also to return to normal growth behaviour in a timely manner when the stress event passes is necessary to maximise growth potential. Post-stress recovery, which has received relatively little attention to date (Crisp *et al*, 2016),

requires tight control of synthesis and degradation processes, such as protein, RNA and metabolite turnover, in order to rapidly alter signalling processes and obtain prompt recovery to allow continuous growth (Lyon *et al*, 2016). In *Arabidopsis*, for example, under transient excess-light stress, upregulated mRNAs show rapid recovery, with half-lives ranging from 2.7 to 60 min, termed "rapid recovery gene downregulation" (RRGD, Crisp *et al*, 2017). Studies in *Medicago* indicate that drought stress recovery involves regulation of the proteome and metabolome via synthesis and degradation processes (Lyon *et al*, 2016). Plant hormones such as cytokinins and auxins and their antagonism of ABA and ethylene (ET) signalling are involved in the regulation of stomatal opening and so may have a key role in certain stress recovery processes (Nguyen et al, 2016). Optimising stress recovery may therefore represent a route to improving plant growth in highly variable conditions (Crisp *et al*, 2017).

Improving Crop Stress Resilience

Generating Resilient Lines

In order to improve the resilience of crops to stress, be it environmental, pest or disease, it is necessary to identify potential sources of resilient genetic material which can subsequently be incorporated into commercial lines through breeding programmes or genetic modification to combine enhanced stress resilience with favourable agronomic characteristics. Breeding programmes require the identification of beneficial traits in compatible material, usually plants of the same or a closely-related species. For genetic modification (GM) approaches, such material can be obtained from heterologous organisms which have physiological or molecular adaptations that provide the required traits of interest. However, public concerns surrounding such technology are currently limiting its uptake in commercial settings, although a recent study in the UK found similar levels of positive and negative attitudes towards genetic modification (Popek and Halagarda, 2017). The cultivation of GM organisms in the UK is likely

also to be subject to political influences such as the relationship of the UK with the EU and other trade partners.

Identifying traits of interest in plant material for the development of new varieties requires both the availability of a wide range of germplasm to test and a reliable method to screen those plants for their response to different sources of stress through whole-plant physiological and morphological studies. The likelihood of identifying material with favourable stress resilience increases with the number and diversity of lines analysed. Seed collections held in genebanks, for example the UK Vegetable Genebank at the University of Warwick, provide a valuable resource of diverse germplasm (Walley et al., 2012, Walley et al., 2017). In order to maximise the efficiency of screening, genebank collections can be selectively sampled to produce Diversity Sets (core collections), which aim to maximise genetic diversity by selecting accessions that best represent available morphological variation and eco-geographical origin in a smaller number of lines. For example, in the UK the Vegetable Genetic Improvement Network (VeGIN), a collaboration between the Universities of Warwick and Harper Adams, has developed such Diversity Sets for a number of crops including Brassica oleracea and lettuce. This concept has also been adopted to improve vegetable production for the organic sector. The Horizon 2020 project 'Breeding for Resilient, Efficient and Sustainable Organic vegetable Production' (BRESOV), led by the University of Catania, Sicily, is a collaboration between 22 European partners, including the University of Liverpool, UK. Core collections have been assembled as sources of genetic variation to improve the resilience of tomato, snap bean, and vegetable Brassica crops grown in organic production systems. Screening these Diversity Sets facilitates efficient, replicated, robust assays of diverse germplasm. Rapid screening of moderately high numbers of lines can help narrow selection for more detailed physiological investigation of underlying mechanisms (Knepper and Mou, 2015). With the development of robust, high-throughput genotyping technologies such as genotype by sequencing (GBS) (Elshire et al., 2011), it is possible to assemble genome-wide genetic marker genotype data for entire diversity collections. This facilitates an assessment of the diversity captured, and the underlying population structure. When combined with phenotypic data, loci contributing to stress resilience can be identified via the use of genome wide association studies (GWAS, Pereira, 2016).

Whilst early land plant evolution occurred in harsh environments with high levels of irradiance and temperature and low water availability, the domestication of crop varieties was performed in more favourable conditions (Pereira, 2016). Crop wild relatives can therefore provide another source of useful traits and frequently can be found to contain beneficial genetic material that has been lost through the process of crop domestication (Hajjar and Hodgkin, 2007, Walley and Moore, 2015). Novel genetic variation not present in domesticated crops can also be generated through chemical or radiative mutagenesis. This approach has been used to investigate traits including drought and salt stress resilience in cauliflower (for example, Fuller *et al.*, 2006; Hadi and Fuller, 2013). In addition, genetic mapping populations that segregate for stress resilience traits can also be screened to locate Quantitative Trait Loci (QTLs), enabling the determination of chromosomal regions linked to traits of interest. Beneficial allelic variants can then be followed through breeding programmes with the assistance of genetic markers during the production of novel varieties.

Developing methods to screen crop populations for sources of stress resilience represents a balance between providing both normal and stressed growing conditions close to those experienced by the crop in a commercial setting and maximising throughput, cost efficiency and obtaining detectable responses to treatments. When investigating the effects of short-term abiotic stress, the duration of stress applied will depend on its required severity, expected weather fluctuations, growth conditions and on the crop under investigation. It would be expected that a treatment of a few hours to a few days followed by a suitable recovery period could be appropriate for investigating resilience to short-term stress, but the exact parameters will need to be determined on a case-by-case basis in order to optimise the benefit of the assay. In addition, screening at the seedling stage not only allows for higher throughput and

so analysis of larger populations and increased replication, but may also more accurately determine responses to transplantation-associated stress.

Stress Priming

Priming, whereby exposure to a stress allows a plant to cope with subsequent similar stress events, through the promotion of stress responses, may also help to improve growth during exposure to repeated short-term stress. The mechanistic detail of priming is an area in need of further investigation (Crisp *et al*, 2016), but the use of this approach has found success in a number of *B. oleracea* crops (for example: Atici *et al*, 2003; Bogdanova and Adritskaya, 1976; Fuller, 1993: Kalisz *et al*, 2014; Rutherford and Whittle, 1981). In one study, for example, short-term cold stress using exposure to 6°C for 6 days enhanced the cold tolerance of cabbage, however, daily 2 h cold treatments did not (Stavang *et al*, 2008). Priming could, however, negatively impact on the stress recovery process by requiring the maintenance of some elements of stress responses in order to enable more rapid future responses. Further investigation is needed to determine if there is a trade-off between priming and stress recovery and of their relative benefits on ultimate crop performance and yield.

Studies in Leafy Vegetable Crops

A series of short-term abiotic stress assays have recently been developed to screen *B. oleracea* lines for resilience to drought, waterlogging, high salinity, heat and freezing stress (Figure 1. and Beacham *et al*, 2017). To properly understand crop responses to multiple stresses, experimentation must aim to reflect in-field stress conditions and timings (Pandey *et al*, 2015). This study used assay systems which aimed to provide a close approximation of transplant stress while allowing sufficient throughput for effective population screening. The stresses were applied for durations up to six days depending on the stress and imposed at

the 3-4 true leaf stage to best mimic transplantation-associated stress. After the end of the treatment, plants were allowed to recover for a period of three weeks before recording growth parameters. This approach identified resilience to multiple sources of short-term early stage stress in *B. oleracea* crop types. The study found that while some lines with resilience to multiple stress types could be identified, overall there was low correlation between the responses to the different stresses. A similar semi-high throughput screening assay for drought tolerance in lettuce and spinach has also been reported (Knepper and Mou, 2015). A short-term (one week) stress was applied to seedlings before re-watering and recovery, recording leaf water content, wilt and growth over the following 10 days.

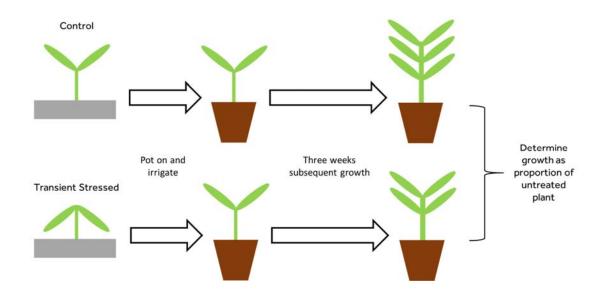


Figure 1. An example assay system for the investigation of short-term stress resilience in *Brassica* oleracea (Beacham et al, 2017). *B. oleracea* seedlings are grown in module trays to the 3-4 true leaf stage before the imposition of short-term (< one week) stress treatments. Seedlings are subsequently transferred to pots, irrigated and grown for a further three weeks before recording growth parameters. Determination of growth response as a proportion of a control plant of the same line is used to compare lines when screening populations with a high level of underlying morphological diversity.

A number of other studies in leafy vegetable crops have investigated the effect of transient stress on crop behaviour. For example, the response of lettuce to short term (0, 6, 12, 18, 24, 30 and 36 h) waterlogging treatments applied 17 days after transplanting and assessed over

the following three weeks found that negative effects of waterlogging on plant growth increased with treatment duration in a varietal-dependent manner (Nobre et al, 2009). In addition, short-term salinity stress has been used to investigate the response of a number of cultivated lettuce varieties (Bartha et al, 2010). Severe salinity stress (150 mM NaCl) decreased light use efficiency and total chlorophyll content while mild stress (50 mM NaCl) increased dry matter content. The authors highlight the simple and cost-effective parameters measured in this study, increasing assay throughput and efficiency. In spinach, meanwhile, an investigation of gene expression during the heat stress response of plants exposed to short-term (30 min or 5 h) treatments revealed a large number of differentially expressed genes between the stress treatments and untreated controls, leading to the determination of candidate heat stress response pathways in this species (Yan et al, 2016). In Brassica crops, a study of the interaction of growing temperature with a two-day waterlogging treatment in cabbage seedlings found cultivar differences in proline content and the activity of antioxidant enzymes (Chen et al, 2014). Short-term (6 to 96 h) waterlogging treatments and their interaction with growth temperature has also been investigated in cauliflower (B. oleracea var. botrytis) and determined a number of proteomic stress responses (Lin et al, 2015). Varietal differences in the response to short-term (five days) waterlogging stress has also been identified in lettuce and broccoli (B. oleracea var. italica, Higashio et al, 2012). The effect of short- and long-term water deficit has been compared in cauliflower, with photosynthetic rate, transpiration rate and stomatal conductance decreasing with increasing stress duration (Hnilickova and Duffek, 2004). The extent of growth inhibition of cabbage seedlings by shortterm (4 or 7 days) salt stress has also been investigated and found to be growth stagedependent (Fölster and Heinsch, 1987). Finally, heat tolerance in cabbage has also been assayed using short-term treatments of 30 min to 2 h (Li et al, 1998). Many of these studies were restricted to investigations of limited germplasm and one or two stress types. There is therefore a need to expand stress screening to investigate larger scale genetic resources, additional and simultaneous stress types, the post-stress recovery process and different crop growth stages.

In Conclusion

Climate change is likely to profoundly alter crop growing conditions in the future, against which more resilient varieties must be developed in order to maintain global food production. Whilst much focus has been paid to long-term abiotic stress such as prolonged drought, the effects of climate change on short-term weather variability means that resilience towards transient phases of abiotic stress during production cycles should also be addressed in order to maximise future crop productivity. Developing new varieties of crop with enhanced abiotic stress resilience requires investigation of the interlinked processes of response to and recovery from both single and multiple simultaneous stresses. The chance of identification of beneficial genetic material for incorporation into crop breeding programmes is greatly increased by the provision of diverse germplasm from both cultivated and wild species and through the development of reliable methods to screen such material. By combining our understanding of the underlying genetic and biochemical processes associated with environmental stress with whole-plant physiological and morphological studies it is hoped that more durable crops can be produced in order for global food provision to be safeguarded for the future.

REFERENCES

Abou-Hussain, S.D., (2012), 'Climate change and its impact on the productivity and quality of vegetable crops,' *Journal of Applied Science Research*, pp 4359-4383.

Atici, O., Demir, Y. and Kocacaliskan, I. (2003), 'Effects of low temperature on winter wheat and cabbage leaves,' *Biologia Plantarum*, Vol 46, pp 603-606.

Atkinson, L. (2010), 'Genetic Characterisation of Post Harvest Spoilage in Lettuce. Chapter 1: Introduction,' PhD thesis, University of Warwick.

Bartha, C., Fodorpataki, L., Székely, G. and Popescu, O. (2010), 'Physiological diversity of lettuce cultivars exposed to salinity stress,' *Contributii Botanice 45 Cluj-Napoca: Universitatea "Babes-Bolyai"* pp 47-56.

Beacham, A.M., Hand, P., Pink, D.A.C. and Monaghan, J.M. (2017), 'Analysis of *Brassica oleracea* early stage abiotic stress responses reveals tolerance in multiple crop types and for multiple sources of stress,' *Journal of the Science of Food and Agriculture,* Vol 97, No 15, pp 5271-5277.

Bisbis, M.B., Gruda, N. and Blanke, M. (2018), 'Potential impacts of climate changes on vegetable production and product quality – A review,' *Journal of Cleaner Production*, Vol 170, pp 1602-1610.

Bogdanova, N.S. and Adritskaya, N.A. (1976), 'The effect of different hardening conditions on head cabbage and cauliflower transplants,' *Zapiski Leningradskogo S.-Kh. Instituta*, Vol 292, pp 34-39.

Chen, P.H., Hsieh, M.H. and Lo, H.F. (2014), 'Physiological response of cabbage (*Brassica oleracea* L. var. *capitata*) to high temperature and waterlogging,' *Journal of the Taiwan Society of Horticultural Science*, Vol 60, No 4, pp 265-286.

Claeys, H. and Inze, D. (2013) 'The agony of choice: how plants balance growth and survival under water-limiting conditions,' *Plant Physiol* Vol 162, No 4, pp 1768-1779.

Committee on Climate Change, (2017), 'UK Climate Change Risk Assessment 2017,' Report.

Available

at:

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/584281/uk-climate-change-risk-assess-2017.pdf (accessed 30 January 2018).

Collier, R., Else, M.A., Fuhrer, J. and Gregory, P. (2014), 'UK fruit and vegetable production – impacts of climate changes and opportunities for adaptation,' CABI Climate Change Series No.5, Climate change impact and adaptation in agricultural systems, Wallingford: CABI pp 88-109.

Crisp, P.A., Ganguly, D., Eichten, S.R., Borevitz, J.O. and Pogson, B.J. (2016), 'Reconsidering plant memory: Intersections between stress recovery, RNA turnover, and epigenetics,' *Science Advances*, Vol 2, No 2, e1501340.

Crisp, P.A., Ganguly, D.R., Smith, A.B., Murray, K.D., Estavillo, G.M., Searle, I., Ford, E., Bogdanovic, O., Lister, R., Borevitz, J.O., Eichten, S.R. and Pogson, B.J. (2017), 'Rapid recovery gene downregulation during excess-light stress and recovery in Arabidopsis,' *Plant Cell*, Epub ahead of print: doi:10.1105/tpc.16.00828.

Dixit, A., Tomar, P., Vaine, E., Abdullah, H., Hazen, S. and Dhankher, O.P. (2018), 'A stress-associated protein, AtSAP13, from *Arabidopsis thaliana* provides tolerance to multiple abiotic stresses,' *Plant, Cell and Environment*, pp 1–15. https://doi.org/10.1111/pce.13103.

Elshire, R. J., Glaubitz, J. C., Sun, Q., Poland, J. A., Kawamoto, K., Buckler, E. S., and Mitchell, S. E. (2011), ,A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species,' *PLoS ONE* 6:e19379. doi: 10.1371/journal.pone.0019379

Eremina, M., Unterholzner, S.J., Rathnayake, A.I., Castellanos, M., Khan, M., Kugler, K.G., May, S.T., Mayer, K.F.X., Rozhon, W. and Poppenberger, B. (2016), 'Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants.' *Proceedings of the National Academy of Sciences, USA*, Vol 113 (40) pp. E5982-E5991.

Feng, Z.J., Xu, S.C., Liu, N., Zhang, G.W., Hu, Q.Z., Xu, Z.S. and Gong, Y.M. (2018), 'Identification of the AQP members involved in abiotic stress responses from *Arabidopsis*,' *Gene*, Vol 646, pp 64-73.

Fölster, E. and Heinsch, G. (1987), 'Growth inhibition of vegetable seedlings due to brief periods of salt stress,' *Gemüse*, Vol 23, No 5, pp 248-251.

Food and Agriculture Organization of the United Nations, (2018), 'FAOSTAT' Available at: http://www.fao.org/faostat/en/#data/QC (accessed 12 February 2018).

Fuller, M.P. (1993), 'Varietal differences in frost hardiness of cauliflower,' *Aspects of Applied Biology*, Vol 34, pp 179-182.

Fuller, M.P., Metwali, E.M.R., Eed, M.H. and Jellings, A.J. (2006), 'Evaluation of abiotic stress resistance in mutated populations of cauliflower (*Brassica oleracea* var. *botrytis*),' *Plant Cell, Tissue and Organ Culture*, Vol 86, No 2, pp 239-248.

Georgii, E., Jin, M., Zhao, J., Kanawati, B., Schmitt-Kopplin, P., Albert, A., Winkler, J.B. and Schaffner. A.R. (2017), 'Relationships between drought, heat and air humidity responses revealed by transcriptome-metabolome co-analysis,' *BMC Plant Biology* Vol 17, p 120.

Hadi, F. and Fuller, M.P. (2013), 'Chemically induced mutants of Brassica oleracea var. botrytis maintained stable resistance to drought and salt stress after regeneration and micropropagation,' *American Journal of Plant Sciences*, Vol 4, No 3, pp 498-507.

Hajjar, R and Hodgkin, T. (2007), 'The use of wild relatives in crop improvement: a survey of developments over the last 20 years.' *Euphytica* Vol 156, No 1-2, pp 1-13.

Higashio, H., Aizawa, S., Kunihisa, M., Murakami, K., Tokuda, S. and Uragami, A. (2012), 'Evaluation for comparison of waterlogging tolerance based on anaerobic respiration reaction of root in lettuce and broccoli,' *Horticulture Research (Japan)*, Vol 11, No 4, pp 477-483.

Hnilickova, H. and Duffek, J. (2004), 'Water deficit and its effect on physiological manifestations in selected varieties of cauliflower (*Brassica oleracea* var. *botrytis* L.),' *Scientia Agriculturae Bohemica*, Vol 35, No 2, pp 57-63.

Huber, D.G. and Gulledge, J. (2011), 'Extreme weather & climate change: understanding the link and managing the risk,' Report, Center for Climate and Energy Solutions. Available at: https://www.c2es.org/document/extreme-weather-and-climate-change (accessed 30 January 2018).

Humbert, S., Subedi, S., Cohn, J., Zeng, B., Bi, Y.M., Chen, X., Zhu, T., McNicholas, P.D. and Rothstein, S.J. (2013), 'Genome-wide expression profiling of maize in response to individual and combined water and nitrogen stresses,' *BMC Genomics*, Vol 14, p 3.

lizumi, T., Furuya, J., Shen, Z., Kim, W., Okada, M., Fujimori, S., Hasegawa, T. and Nishimori, M. (2017), 'Responses of crop yield growth to global temperature and socioeconomic changes,' *Scientific Reports*, Vol 7, p 7800.

Jia, J., Zhou, J., Shi, W., Cao, X., Luo, J., Polle, A. and Luo, Z.B. (2017), 'Comparative transcriptomic analysis reveals the roles of overlapping heat-/drought-responsive genes in poplars exposed to high temperature and drought,' *Scientific Reports* Vol 7, p 43215.

Kalisz, A., Cebula, S., Kunicki, E., Gil, J., Sekara, A. and Grabowska, A. (2014), 'Effect of chilling stress before transplanting on morphological variables of broccoli heads,' *Acta Scientiarum Polonorum Hortorum Cultus*, Vol 13, pp 129-139.

Kim, Y., Hwang, I., Jung, H.J., Park, J.I., Kang, J.G. and Nou, I.S. (2016), 'Genome-Wide Classification and Abiotic Stress-Responsive Expression Profiling of Carotenoid Oxygenase Genes in *Brassica rapa* and *Brassica oleracea*,' *Journal of Plant Growth Regulation*, Vol 35. No 1, pp 202-214.

Knepper, C. and Mou, D. (2015), 'Semi-high throughput screening for potential drought-tolerance in lettuce (*Lactuca sativa*) germplasm collections,' *Journal of Visualized Experiments*, Vol 98, e52492.

Kumar, M. (2016), 'Impact of climate change on crop yield and role of model for achieving food security,' *Environmental Monitoring and Assessment*, Vol 188, p 465.

Li, C.Q., Song, H.Y., Lie, J.J., Song, M., Ren, X.S. and Xiang, X. (1998), 'A study of heat tolerance identification in *Brassica oleracea*,' *Journal of Southwest Agricultural University*, Vol, 20 No 4, pp 298-302.

Lin, K.H., Chen, L.F.O., Li, S.D. and Lo, H.F. (2015), 'Comparative proteomic analysis of cauliflower under high temperature and flooding stresses,' *Scientia Horticulturae*, Vol 183, pp 118-129.

Lyon, D., Castillejo, M.A., Mahmeti-Tershani, V., Staudinger, C., Kleemaier, C. and Wienkoop, S. (2016), 'Drought and recovery: independently regulated processes highlighting the importance of protein turnover dynamics and translational regulation in *Medicago truncatula*,' *Molecular and Cellular Proteomics*, Vol 15, pp 1921-1937.

Medvigy, D. and Beaulieu, C. (2011), 'Trends in daily solar radiation and precipitation coefficients of variation since 1984,' *Journal of Climate*, Vol 25, pp 1330-1339.

Muthuramalingam, P., Krishnan, S.R., Pothiraj, R. and Ramesh, M. (2017), 'Global transcriptome analysis of combined abiotic stress signalling genes unravels key players in *Oryza sativa* L.: An in silico approach,' Frontiers in Plant Science Vol 8, p 759.

Nguyen, D., Rieu, I., Mariani, C. and Van Dam, N.M. (2016), 'How plants handle multiple stresses: hormonal interactions underlying responses to abiotic stress and insect herbivory,' *Plant Molecular Biology*, Vol 91, pp 727-740.

Nobre, R.G., Fernandes, P.D., Gheyi, H.R., Brito, M.E.B. and Da Silva, L.A. (2009), 'Growth of lettuce under temporary saturation of soil,' *Revista Brasileira de Engenharia Agrícola e Ambiental 13 Campina Grande: Revista Brasileira de Engenharia Agricola e Ambiental:* pp 890-898.

Pandey, P., Ramegowda, V. and Senthil-Kumar, M. (2015), 'Shared and unique responses of plants to multiple individual stresses and stress combinations: physiological and molecular mechanisms,' *Frontiers in Plant Science*, Vol 6, p 723.

Pereira, A. (2016), 'Plant abiotic stress challenges from the changing environment,' *Frontiers* in *Plant Science*, Vol 7, p 1123.

Popek, S. and Halagarda, M. (2017), 'Genetically modified foods: Consumer awareness, opinions and attitudes in selected EU countries,' *International Journal of Consumer Studies*, Vol 41, pp 325-332.

Rasmussen, S., Barah, P., Suarez-Rodriguez, M.C., Bressendorff, S., Priis, P, Constantino, P., Bones, A.M., Nielson, H.B. and Mundy, J. (2013), 'Transcriptome responses to combinations of stresses in Arabidopsis,' *Plant Physiol* Vol 161, No 4, pp 1783-1794.

Rizhsky, L., Liang, H., Shuman, J., Shulaev, V., Davletova, S. and Mittler, R. (2004), 'When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress,' *Plant Physiology*, Vol 134, pp 1683-1696.

Rosenzweig, C., Elliott, J., Deryng, D., Ruane, A.C., Muller, C., Arneth, A., Boote, K.J., Folberth, C., Glotter, M., Khabarov, N., Neumann, K., Piontek, F., Pugh, T.A., Schmid, E., Stehfest, E., Yang, H. and Jones, J.W. (2014), 'Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison,' *Proceedings of the National Academy of Sciences of the U.S.A.*, Vol 111, pp 3268–3273.

Rutherford, P.P. and Whittle, R. (1981), 'Changes in sucrose levels as an indicator of the marketable quality of cauliflowers exposed to freezing temperatures,' *Scientia Hort*, Vol 14, No 2, pp 117-123.

Sahin, U., Ekinci, M., Ors, S., Turan, M., Yildiz, S. and Yildirim, E. (2018), 'Effects of individual and combined effects of salinity and drought on physiological, nutritional and biochemical properties of cabbage (*Brassica oleracea* var. capitata),' *Scientia Hort* Vol 240, pp 196-204.

Scheelbeek, P.F.D., Bird, F.A., Tuomisto, H.L., Green, R., Harris, F.B., Joy, E.J.M., Chalabi, Z., Allen, E., Haines, A. and Dangour, A.D. (2018), 'Effect of environmental changes on vegetable and legume yields and nutritional quality,' *Proc Nat Acad Sci USA* 201800442 https://doi.org/10.1073/pnas.1800442115.

Shaar-Moshe, L., Blumwald, E. and Peleg, Z. (2017), 'Unique physiological and transcriptional shifts under combinations of salinity, drought and heat,' *Plant Physiol* Vol 174, No 1, pp 421-434.

Shanmugam, A., Thamilarasan, S.K., Park, J.I., Jung, M.Y., Nou, I.S. (2016), 'Characterization and abiotic stress-responsive expression analysis of SGT1 genes in *Brassica oleracea*,' *Genome*, Vol 59, No 4, pp 243-251.

Stavang, J.A., Hansen, M. and Olsen, J.E. (2008), 'Short term temperature drops do not enhance cold tolerance,' *Plant Growth Regulation*, Vol 55, No 3, pp 199-206.

United States Environmental Protection Agency, (2018), 'Climate change indicators: weather and climate,' Available at: https://www.epa.gov/climate-indicators/weather-climate (accessed 30 January 2018).

Vile, D., Pervent, M., Belluau, M., Vasseur, F., Bresson, J., Muller, B. *et al* (2012), 'Arabidopsis growth under prolonged high temperature and water deficit: independent or interactive effects?' *Plant, Cell and Environment*, Vol 35, pp 702-718.

Walley, P.G., Teakle, G.R., Moore, J.D., Allender, C.J., Pink, D.A.C., Buchanan-Wollaston, V. and Barker, G.C. (2012), 'Developing genetic resources for pre-breeding in *Brassica oleracea*

L.: an overview of the UK perspective,' *Journal of Plant Biotechnology,* Vol 39, No 1, pp 62-68.

Walley, P. G., & Moore, J. D. (2015). Chapter 12: Biotechnology and Genomics: Exploiting the Potential of CWR. In Crop Wild Relatives and Climate Change (pp. 212-223). Wiley-Blackwell.

Walley, P.G., Hough, G., Moore, J.D., Carder, J., Elliott, M., Mead, A., Jones, J., Teakle, G.R., Barker, G.C., Buchanan-Wollaston, V., Hand, P., Pink, D.A.C., Collier, R. (2017), 'Towards new sources of resistance to the currant-lettuce aphid (*Nasonovia ribisnigri*).' *Molecular Breeding*, Vol 37, No 4.

Wheeler, T. and Von Braun, J. (2013), 'Climate change impacts on global food security,' *Science*, Vol 341, No 6145, pp 508-13.

Yan, J., Yu, L., Lu, Y., Lu, S. and Zhu, W. (2016), 'De novo transcriptome sequencing and gene expression profiling of spinach (*Spinacia oleracea* L.) leaves under heat stress,' *Scientific Reports*, Vol 6, No 19473.

Zhang, J.Z., Creelman, R.A. and Zhu, J.K. (2004), 'From laboratory to field. Using information from Arabidopsis to engineer salt, cold, and drought tolerance in crops,' *Plant Physiol*ogy, Vol 135, No 2, pp 615-621.

Zhao, C., Liu, B., Piao, S., Wang, X., Lobell, D.B., Huang, Y., Huang, M., Yao, Y., Bassu, S., Ciais, P., Durand, J., Elliott, J., Ewert, F., Janssens, I.A., Li, T., Lin, E., Liu, Q., Martre, P., Muller, C., Peng, S., Penuelas, J., Ruane, A.C., Wallach, D., Wang, T., Wu, D., Liu, Z., Zhu, Y., Zhu, Z. and Asseng, S. (2017), 'Temperature increase reduces global yields of major crops in four independent estimates,' *Proceedings of the National Academy of Sciences of the U.S.A.*, Vol 114, No 35, pp 9326-9331.

Zhou, R., Yu, X., Ottosen, C.O., Rosenqvist, E., Zhao, L., Wang, Y., Yu, W., Zhao, T. and Wu, Z. (2017), 'Drought stress had a predominant effect over heat stress on three tomato cultivars subjected to combined stress,' *BMC Plant Biology* Vol 17, p 24.

Zhu, J.K. (2016), 'Abiotic stress signaling and responses in plants,' Cell, Vol 167, pp 313-324.