111 research outputs found

    Seasonal variation of the three-dimensional mean circulation over the Scotian Shelf

    Get PDF
    The seasonal-mean circulation over the Scotian Shelf is studied numerically by computing mean and tidal current fields for winter, spring, and summer using a three-dimensional nonlinear diagnostic model. The mean current fields are forced by seasonal-mean baroclinic pressure gradients, tidal rectification, uniform wind stresses, and associated barotropic pressure gradients. A historical hydrographic database is used to determine the climatological mean baroclinic forcing. Upstream open boundary conditions are estimated from the density fields to give no normal geostrophic bottom flow and are specified as either along-boundary elevation gradients or depth-integrated normal velocities. The numerical solutions for nominal bimonthly periods (January–February, April–May, and July–August) reveal the dominant southwestward nearshore and shelf-break flows of relatively cool and fresh shelf water from the Gulf of St. Lawrence and Newfoundland Shelf, with speeds up to about 20 cm/s. The seasonal intensification of the southwestward flows is reproduced by the model, with the transport increasing from 0.3 Sv in summer to 0.9 Sv in winter on the inner Halifax section. There are also pronounced topographic-scale influences of submarine banks, basins, and cross-shelf channels on the circulation, such as anticyclonic gyres over banks and cyclonic gyres over basins. Baroclinicity is the dominant forcing throughout the domain, but tidal rectification is comparable on the southwestern Scotian Shelf (e.g., about 0.2 Sv recirculating transport around Browns Bank for all the periods). The mean wind stress generates offshore surface drift in winter. The solutions are in approximate agreement with observed currents and transports over the Scotian Shelf, although there are local discrepancies

    Seasonal Variability of the Labrador Current and Shelf Circulation off Newfoundland

    Get PDF
    Three-dimensional finite element models were established for the Newfoundland and Labrador Shelf to investigate climatological monthly mean wind- and density-driven circulation. The model was forced using wind stresses from the National Center for Environmental Prediction-National Center for Atmospheric Research reanalysis data prescribed at the sea surface, large-scale remote forcing determined from a North Atlantic model, monthly mean temperature and salinity climatology, and M2 tide on the open boundary. The model results were examined against various in situ observations (moored current meter, tide gauge, and vessel-mounted acoustic Doppler current profiler data) and satellite drift measurements and discussed together with literature information. The seasonal mean circulation solutions were investigated in terms of relative importance of wind to density forcing for the Labrador Current. The model results indicate significant seasonal and spatial variations, consistent generally with previous study results and in approximate agreement with observations for the major currents. The region is dominated by the equatorward flowing Labrador Current along the shelf edge and along the Labrador and Newfoundland coasts. The Labrador Current is strong in the fall/winter and weak in the spring/summer. The mean transport of the shelf edge Labrador Current is 7.5 Sv at the Seat Island transect and 5.5 Sv through the Flemish Pass. The seasonal ranges are 4.5 and 5.2 Sv at the two sections, respectively. Density- and wind-driven components are both important in the inshore Labrador Current. The density-driven component dominates the mean component of the shelf edge Labrador Current while the large-scale wind-forcing contributes significantly to its seasonal variability

    Annual sea level variations off Atlantic Canada from satellite altimetry

    Get PDF
    Annual cycle of sea level off Atlantic Canada has been investigated based on a merged satellite altimetry dataset and a monthly temperature and salinity dataset. The altimetric results were compared with coastal tide-gauge data and steric height calculated from the temperature and salinity dataset. There was a general north-south variation in the amplitude of the altimetric annual cycle, increasing from 4 cm in the Labrador Sea to 15 cm in the Gulf Stream and the North Atlantic Current Region. The annual cycle in the deep ocean can approximately be accounted for by the steric height variability relative to 700 m, in which the thermosteric effect was the dominant contributor. The halosteric effect over the continental slope, especially over the northern Labrador Slope was also important. While the thermosteric effect occurred dominantly at the top 100 m water column, there was substantial halosteric variation in the 100–300 m water column. The annual sea level cycle along the Canadian Atlantic coast showed a complicated pattern in amplitude, but the phase was highly coherent with the highest sea level in fall. The steric height accounts for a substantial portion of the coastal annual cycle, but other factors such as wind forcing may be equally important

    Seasonality of the Meridional Overturning Circulation in the subpolar North Atlantic

    Get PDF
    Understanding the variability of the Atlantic Meridional Overturning Circulation is essential for better predictions of our changing climate. Here we present an updated time series (August 2014 to June 2020) from the Overturning in the Subpolar North Atlantic Program. The 6-year time series allows us to observe the seasonality of the subpolar overturning and meridional heat and freshwater transports. The overturning peaks in late spring and reaches a minimum in early winter, with a peak-to-trough range of 9.0 Sv. The overturning seasonal timing can be explained by winter transformation and the export of dense water, modulated by a seasonally varying Ekman transport. Furthermore, over 55% of the total meridional freshwater transport variability can be explained by its seasonality, largely owing to overturning dynamics. Our results provide the first observational analysis of seasonality in the subpolar North Atlantic overturning and highlight its important contribution to the total overturning variability observed to date

    Altimetry for the future: Building on 25 years of progress

    Get PDF
    In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology. The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the ‘‘Green” Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instruments’ development and satellite missions’ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion

    Analysis on the situation of subjective well-being and its influencing factors in patients with ankylosing spondylitis

    Full text link
    BACKGROUND: To examine the subjective well-being (SWB) in patients with ankylosing spondylitis (AS) compared with the healthy controls, and to explore the associations between SWB and demographic characteristics, disease-specific variables in AS patients. METHODS: SWB was assessed with General Well-Being Schedule (GWBS) in 200 AS patients and 210 healthy controls. Comparisons among subgroups were performed to investigate how certain aspects operate as favorable or adverse factors in influencing SWB in the patients with AS. RESULTS: Both men and women with AS reported significantly impaired SWB on all scales of the GWBS except for the Control (O) scale. The results revealed that better sleep, lower disease activity and more family care predicted higher SWB. In AS patients, positive attitude towards therapy prospect was significantly associated with higher SWB. Therapy prospect refers to the hope of patients about the disease treatment. CONCLUSIONS: Compared with general population, SWB might be affected by the onset of AS. There are significant associations between SWB and sleep quality, BASDAI, APGAR, therapy prospect

    Altimetry for the future: building on 25 years of progress

    Get PDF
    In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology. The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the “Green” Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instruments’ development and satellite missions’ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion

    Satellite Observations of Seasonal and Interannual Changes of Sea Level and Currents over the Scotian Slope

    Get PDF
    Seasonal and interannual sea level and current variations over the Scotian slope are examined using 10 years of Ocean Topography Experiment (TOPEX)/Poseidon (T/P) satellite altimeter data. Geostrophic surface current anomalies normal to ground tracks are derived from the along-track gradients of sea level anomalies. The altimetric current anomalies are combined with a climatological mean circulation field of a finite-element model to construct nominal absolute currents. The seasonal mean results indicate that the sea level is highest in late summer and lowest in late winter and that the surface slope circulation is strong in winter/autumn and weaker in summer/spring. The total transport associated with the westward shelf-edge current and with the eastward slope current, calculated by combining the T/P data with a climatological seasonal mean density field, reveals a substantial seasonal change dominated by the barotropic component. The present analysis reveals prominent interannual changes of the sea level and current anomalies for the study period. The sea level was lowest in 1996/97, when the Gulf Stream was in its most southern position. The mean winter circulation over the Scotian slope was strongest (up to 30 cm s−1 in both the southwestward shelf-edge current and northeastward slope current) in 1998 and weakest (weaker and broader shelf-edge current) in 1996, which may be related to the fluctuation of the equatorward Labrador Current strength and of the Gulf Stream north–south position. The study also suggests that the root-mean-square current magnitude is positively correlated with the occurrence of the Gulf Stream warm-core rings (WCRs) on the interannual scale, while WCR yearly mean kinematic properties seem to have small variations

    Velocity and transport of the Labrador Current determined from altimetric, hydrographic, and wind data

    Get PDF
    Seasonal change of velocity and transport in the Labrador Current is studied using 3.5 years of TOPEX/Poseidon altimeter data, in conjunction with concurrent wind data and climatological density data. A method based on the linearized momentum equation is developed, in which vertically averaged velocities and volume transports normal to selected sections across the Labrador Sea are computed with the sea surface being the level of known motion measured by the altimeter. The three data sources have significantly different temporal and spatial scales, and thus a smoothing technique has been applied to ensure their consistency. Error analyses are performed to estimate the uncertainty in altimetric measurements and geophysical corrections and in density data. The seasonal range of the Labrador Current transport from the 300-m isobath seaward to the deepest ocean varies from 17 Sv at the Nain Section to 10 Sv at the Hamilton Section and 5 Sv at the northern Newfoundland Section, with a maximum in winter or fall and a minimum in spring. The barotropic effect associated with sea surface slope is most important over the shelf break and upper continental slope at the Nain and Hamilton Sections. At the northern Newfoundland Section the baroclinic effect associated with density gradients has a magnitude comparable with that of the barotropic effect. The largest baroclinic variability occurs offshore of the main density front over the lower continental slope of the Hamilton Section. The Ekman transport variability forced by local wind stress is negligible
    • 

    corecore