211 research outputs found

    Crataegus Extract WS®1442 Stimulates Cardiomyogenesis and Angiogenesis From Stem Cells: A Possible New Pharmacology for Hawthorn?

    Get PDF
    Extracts from the leaves and flowers of Crataegus spp. (i.e., hawthorn species) have been traditionally used with documented preclinical and clinical activities in cardiovascular medicine. Based on reported positive effects on heart muscle after ischemic injury and the overall cardioprotective profile, the present study addressed potential contributions of Crataegus extracts to cardiopoietic differentiation from stem cells. The quantified Crataegus extract WS®1442 stimulated cardiomyogenesis from murine and human embryonic stem cells (ESCs). Mechanistically, this effect was found to be induced by promoting differentiation of cardiovascular progenitor cell populations but not by proliferation. Bioassay-guided fractionation, phytochemical and analytical profiling suggested high-molecular weight ingredients as the active principle with at least part of the activity due to oligomeric procyanidines (OPCs) with a degree of polymerization between 3 and 6 (DP3–6). Transcriptome profiling in mESCs suggested two main, plausible mechanisms: These were early, stress-associated cellular events along with the modulation of distinct developmental pathways, including the upregulation of brain-derived neurotrophic factor (BDNF) and retinoic acid as well as the inhibition of transforming growth factor β/bone morphogenetic protein (TGFβ/BMP) and fibroblast growth factor (FGF) signaling. In addition, WS®1442 stimulated angiogenesis ex vivo in Sca-1+ progenitor cells from adult mice hearts. These in vitro data provide evidence for a differentiation promoting activity of WS®1442 on distinct cardiovascular stem/progenitor cells that could be valuable for therapeutic heart regeneration after myocardial infarction. However, the in vivo relevance of this new pharmacological activity of Crataegus spp. remains to be investigated and active ingredients from bioactive fractions will have to be further characterized

    The serum proteome of Atlantic salmon, Salmo salar, during pancreas disease (PD) following infection with salmonid alphavirus subtype 3 (SAV3)

    Get PDF
    Salmonid alphavirus is the aetological agent of pancreas disease (PD) in marine Atlantic salmon, Salmo salar, and rainbow trout, Oncorhynchus mykiss, with most outbreaks in Norway caused by SAV subtype 3 (SAV3). This atypical alphavirus is transmitted horizontally causing a significant economic impact on the aquaculture industry. This histopathological and proteomic study, using an established cohabitational experimental model, investigated the correlation between tissue damage during PD and a number of serum proteins associated with these pathologies in Atlantic salmon. The proteins were identified by two-dimensional electrophoresis, trypsin digest and peptide MS/MS fingerprinting. A number of humoral components of immunity which may act as biomarkers of the disease were also identified. For example, creatine kinase, enolase and malate dehydrogenase serum concentrations were shown to correlate with pathology during PD. In contrast, hemopexin, transferrin, and apolipoprotein, amongst others, altered during later stages of the disease and did not correlate with tissue pathologies. This approach has given new insight into not only PD but also fish disease as a whole, by characterisation of the protein response to infection, through pathological processes to tissue recovery. Biological significance: Salmonid alphavirus causes pancreas disease (PD) in Atlantic salmon, Salmo salar, and has a major economic impact on the aquaculture industry. A proteomic investigation of the change to the serum proteome during PD has been made with an established experimental model of the disease. Serum proteins were identified by two-dimensional electrophoresis, trypsin digest and peptide MS/MS fingerprinting with 72 protein spots being shown to alter significantly over the 12 week period of the infection. The concentrations of certain proteins in serum such as creatine kinase, enolase and malate dehydrogenase were shown to correlate with tissue pathology while other proteins such as hemopexin, transferrin, and apolipoprotein, altered in concentration during later stages of the disease and did not correlate with tissue pathologies. The protein response to infection may be used to monitor disease progression and enhance understanding of the pathology of PD

    Towards Blood Flow in the Virtual Human: Efficient Self-Coupling of HemeLB

    Get PDF
    Many scientific and medical researchers are working towards the creation of a virtual human - a personalised digital copy of an individual - that will assist in a patient's diagnosis, treatment and recovery. The complex nature of living systems means that the development of this remains a major challenge. We describe progress in enabling the HemeLB lattice Boltzmann code to simulate 3D macroscopic blood flow on a full human scale. Significant developments in memory management and load balancing allow near linear scaling performance of the code on hundreds of thousands of computer cores. Integral to the construction of a virtual human, we also outline the implementation of a self-coupling strategy for HemeLB. This allows simultaneous simulation of arterial and venous vascular trees based on human-specific geometries.Comment: 30 pages, 10 figures, To be published in Interface Focus (https://royalsocietypublishing.org/journal/rsfs

    Selenium inclusion decreases oxidative stress indicators and muscle injuries in sea bass larvae fed high-DHA microdiets

    Get PDF
    The objective of the present study was to determine the effect of Se inclusion in high-DHA and vitamin E microdiets (5 g DHA/100 g dry weight and 300 mg vitamin E/100 g dry weight; 5 g DHA/100 g dry weight and 300 mg vitamin E/100 g dry weight supplemented with Se) in comparison with a control diet (1 g DHA/100 g dry weight and 150 mg vitamin E/100 g dry weight) on sea bass larval growth, survival, biochemical composition, malonaldehyde (MDA) content, muscle morphology and antioxidant enzymes (AOE), insulin-like growth factors (IGF) and myosin expression. For a given DHA and vitamin E dietary content, Se inclusion favoured larval total length and specific growth rate, and reduced the incidence of muscular lesions, MDA contents and AOE gene expression. In contrast, IGF gene expression was elevated in the 5/300 larvae, suggesting an increased muscle mitogenesis that was corroborated by the increase in mRNA copies of myosin heavy chain. The results of the present study denoted the beneficial effect of Se not only in preventing oxidative stress, as a glutathione peroxidase cofactor, but probably due to other as yet unknown physiological functions

    Effects of dietary protein and fat level and rapeseed oil on growth and tissue fatty acid composition and metabolism in Atlantic salmon (Salmo salar L.) reared at low water temperatures

    Get PDF
    A 12 week feeding trial was conducted to elucidate the interactive effects of dietary fat and protein contents and oil source on growth, fatty acid composition, protein retention efficiency (PRE) and β-oxidation activity of muscle and liver in Atlantic salmon (Salmo salar L.) at low water temperatures (4.2 oC). Triplicate groups of Atlantic salmon (initial weight 1168 g) were fed six isoenergetic diets formulated to provide either 390 g kg-1 protein and 320 g kg-1 fat (high protein (HP) diets) or 340 g kg-1 protein and 360 g kg-1 fat (low protein (LP) diets); within each dietary protein/fat level crude RO comprised 0, 30 or 60% (R0, R30, R60, respectively) of the added oil. After 12 weeks the overall growth and FCR were very good for all treatments (TGC; 4.76 (±0.23), FCR; 0.85 (±0.02)). Significant effects were shown due to oil source on SGR and TGC only. The liver and muscle FA compositions were highly affected by the graded inclusion of RO. The PRE was significantly affected by the dietary protein level, while no significant effects were shown in total β-oxidation capacity of liver and muscle. The results of this study suggest that more sustainable, lower protein diets with moderate RO inclusion can be used in Atlantic salmon culture at low water temperatures with no negative effects on growth and feed conversion, no major detrimental effects on lipid and fatty acid metabolism and a positive effect on protein sparing

    The Aspartate-Semialdehyde Dehydrogenase of Edwardsiella ictaluri and Its Use as Balanced-Lethal System in Fish Vaccinology

    Get PDF
    asdA mutants of Gram-negative bacteria have an obligate requirement for diaminopimelic acid (DAP), which is an essential constituent of the peptidoglycan layer of the cell wall of these organisms. In environments deprived of DAP, i.e., animal tissues, they will undergo lysis. Deletion of the asdA gene has previously been exploited to develop antibiotic-sensitive strains of live attenuated recombinant bacterial vaccines. Introduction of an Asd+ plasmid into a ΔasdA mutant makes the bacterial strain plasmid-dependent. This dependence on the Asd+ plasmid vector creates a balanced-lethal complementation between the bacterial strain and the recombinant plasmid. E. ictaluri is an enteric Gram-negative fish pathogen that causes enteric septicemia in catfish. Because E. ictaluri is a nasal/oral invasive intracellular pathogen, this bacterium is a candidate to develop a bath/oral live recombinant attenuated Edwardsiella vaccine (RAEV) for the catfish aquaculture industry. As a first step to develop an antibiotic-sensitive RAEV strain, we characterized and deleted the E. ictaluri asdA gene. E. ictaluri ΔasdA01 mutants exhibit an absolute requirement for DAP to grow. The asdA gene of E. ictaluri was complemented by the asdA gene from Salmonella. Several Asd+ expression vectors with different origins of replication were transformed into E. ictaluri ΔasdA01. Asd+ vectors were compatible with the pEI1 and pEI2 E. ictaluri native plasmids. The balanced-lethal system was satisfactorily evaluated in vivo. Recombinant GFP, PspA, and LcrV proteins were synthesized by E. ictaluri ΔasdA01 harboring Asd+ plasmids. Here we constructed a balanced-lethal system, which is the first step to develop an antibiotic-sensitive RAEV for the aquaculture industry

    Challenges and Opportunities in Finfish Nutrition

    Get PDF
    Much of the criticism leveled at aquaculture (e.g., dependency on animal-derived feedstuffs, nutrient-laden effluent discharges, and increased organic contamination in edible products) can be traced to the feeds in use. Accordingly, finfish nutritionists are being challenged to formulate feeds that not only meet the nutritional requirements of livestock but also minimize production costs, limit environmental impacts, and enhance product quality. These challenges not only add considerable complexity to finfish nutrition but also afford opportunities to avoid some of the mistakes made by other industries in the past. From a review of the current status of finfish nutrition with respect to major nutrient classes, we comment on future opportunities and promising avenues of research. Alternative protein sources, specifically those derived from marine bycatch, plants, and microbes, are discussed, as well as methods to facilitate their implementation in finfish feeds. Dietary lipid, its role in fish bioenergetics and physiology, and quality of aquaculture products is reviewed with special emphasis on alternative lipid sources and finishing diets. Carbohydrates and fiber are discussed in terms of nutrient-sparing, least-cost diet formulation and digestive physiology. Micronutrients are reviewed in terms of current knowledge of requirements and, along with other dietary immunostimulants, are given further consideration in a review of nutriceuticals and application in finfish feeds. The status of nutritional research in new aquaculture species is also outlined. By integrating classical approaches with emerging technologies, dietary formulations, and species, finfish nutritionists may identify means to increase production efficiency and sustainability and provide for the continued success of aquaculture
    • …
    corecore