77 research outputs found

    Protein complex from human milk enhances the activity of antibiotics and drugs against Mycobacterium tuberculosis.

    Get PDF
    Mycobacterium tuberculosis, the causative agent of human tuberculosis (TB), has surpassed HIV/AIDS as the leading cause of death from a single infectious agent. The increasing occurrence of drug-resistant strains has become a major challenge for health care systems and, in some cases, has rendered TB untreatable. However, the development of new TB drugs has been plagued with high failure rates and costs. Alternative strategies to increase the efficacy of current TB treatment regimens include host-directed therapies or agents that make M. tuberculosis more susceptible to existing TB drugs. In this study, we show that HAMLET, an α-lactalbumin-oleic acid complex derived from human milk, has bactericidal activity against M. tuberculosis HAMLET consists of a micellar oleic acid core surrounded by a shell of partially denatured α-lactalbumin molecules and unloads oleic acid into cells upon contact with lipid membranes. At sublethal concentrations, HAMLET potentiated a remarkably broad array of TB drugs and antibiotics against M. tuberculosis For example, the minimal inhibitory concentrations of rifampin, bedaquiline, delamanid, and clarithromycin were decreased by 8- to 16-fold. HAMLET also killed M. tuberculosis and enhanced the efficacy of TB drugs inside macrophages, a natural habitat of M. tuberculosis Previous studies showed that HAMLET is stable after oral delivery in mice and nontoxic in humans and that it is possible to package hydrophobic compounds in the oleic acid core of HAMLET to increase their solubility and metabolic stability. The potential of HAMLET and other liprotides as drug delivery and sensitization agents in TB chemotherapy is discussed here.Microbiology and Molecular Genetic

    Directed vaccination against pneumococcal disease

    Get PDF
    Immunization strategies against commensal bacterial pathogens have long focused on eradicating asymptomatic carriage as well as disease, resulting in changes in the colonizing microflora with unknown future consequences. Additionally, current vaccines are not easily adaptable to sequence diversity and immune evasion. Here, we present a "smart" vaccine that leverages our current understanding of disease transition from bacterial carriage to infection with the pneumococcus serving as a model organism. Using conserved surface proteins highly expressed during virulent transition, the vaccine mounts an immune response specifically against disease-causing bacterial populations without affecting carriage. Aided by a delivery technology capable of multivalent surface display, which can be adapted easily to a changing clinical picture, results include complete protection against the development of pneumonia and sepsis during animal challenge experiments with multiple, highly variable, and clinically relevant pneumococcal isolates. The approach thus offers a unique and dynamic treatment option readily adaptable to other commensal pathogens

    Apoptosis-Like Death in Bacteria Induced by HAMLET, a Human Milk Lipid-Protein Complex

    Get PDF
    Background: Apoptosis is the primary means for eliminating unwanted cells in multicellular organisms in order to preserve tissue homeostasis and function. It is characterized by distinct changes in the morphology of the dying cell that are orchestrated by a series of discrete biochemical events. Although there is evidence of primitive forms of programmed cell death also in prokaryotes, no information is available to suggest that prokaryotic death displays mechanistic similarities to the highly regulated programmed death of eukaryotic cells. In this study we compared the characteristics of tumor and bacterial cell death induced by HAMLET, a human milk complex of alpha-lactalbumin and oleic acid. Methodology/Principal Findings: We show that HAMLET-treated bacteria undergo cell death with mechanistic and morphologic similarities to apoptotic death of tumor cells. In Jurkat cells and Streptococcus pneumoniae death was accompanied by apoptosis-like morphology such as cell shrinkage, DNA condensation, and DNA degradation into high molecular weight fragments of similar sizes, detected by field inverse gel electrophoresis. HAMLET was internalized into tumor cells and associated with mitochondria, causing a rapid depolarization of the mitochondrial membrane and bound to and induced depolarization of the pneumococcal membrane with similar kinetic and magnitude as in mitochondria. Membrane depolarization in both systems required calcium transport, and both tumor cells and bacteria were found to require serine protease activity (but not caspase activity) to execute cell death. Conclusions/Significance: Our results suggest that many of the morphological changes and biochemical responses associated with apoptosis are present in prokaryotes. Identifying the mechanisms of bacterial cell death has the potential to reveal novel targets for future antimicrobial therapy and to further our understanding of core activation mechanisms of cell death in eukaryote cells

    COVID Isolation Eating Scale (CIES): Analysis of the impact of confinement in eating disorders and obesity-A collaborative international study

    Get PDF
    Confinement during the COVID-19 pandemic is expected to have a serious and complex impact on the mental health of patients with an eating disorder (ED) and of patients with obesity. The present manuscript has the following aims: (1) to analyse the psychometric properties of the COVID Isolation Eating Scale (CIES), (2) to explore changes that occurred due to confinement in eating symptomatology; and (3) to explore the general acceptation of the use of telemedicine during confinement. The sample comprised 121 participants (87 ED patients and 34 patients with obesity) recruited from six different centres. Confirmatory Factor Analyses (CFA) tested the rational-theoretical structure of the CIES. Adequate goodness-of-fit was obtained for the confirmatory factor analysis, and Cronbach alpha values ranged from good to excellent. Regarding the effects of confinement, positive and negative impacts of the confinement depends of the eating disorder subtype. Patients with anorexia nervosa (AN) and with obesity endorsed a positive response to treatment during confinement, no significant changes were found in bulimia nervosa (BN) patients, whereas Other Specified Feeding or Eating Disorder (OSFED) patients endorsed an increase in eating symptomatology and in psychopathology. Furthermore, AN patients expressed the greatest dissatisfaction and accommodation difficulty with remote therapy when compared with the previously provided face-to-face therapy. The present study provides empirical evidence on the psychometric robustness of the CIES tool and shows that a negative confinement impact was associated with ED subtype, whereas OSFED patients showed the highest impairment in eating symptomatology and in psychopathology.This manuscript and research was supported by grants from the Ministeriode Economía y Competitividad (PSI2015-68701-R), Instituto de Salud Carlos III (ISCIII) (FIS PI14/00290/ INT19/00046nd PI17/01167) and co-funded by FEDER funds/European Regional Development Fund (ERDF), a way to build Europe. CIBERobn, CIBERsam and CIBERDEM are all initiatives of ISCIII. GMB is supported by a postdoctoral grant from FUNCIVA. This initiative is supported by Generalitat de Catalunya. LM is supported by a postdoctoral grant of the mexican institution Consejo Nacional de Ciencia y Tecnología (CONACYT). PPM was supported, in part, by a Portuguese Foundation for Science and Technology grant (POCI-01-0145-FEDER-028145). The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript

    PerR Confers Phagocytic Killing Resistance and Allows Pharyngeal Colonization by Group A Streptococcus

    Get PDF
    The peroxide response transcriptional regulator, PerR, is thought to contribute to virulence of group A Streptococcus (GAS); however, the specific mechanism through which it enhances adaptation for survival in the human host remains unknown. Here, we identify a critical role of PerR-regulated gene expression in GAS phagocytosis resistance and in virulence during pharyngeal infection. Deletion of perR in M-type 3 strain 003Sm was associated with reduced resistance to phagocytic killing in human blood and by murine macrophages in vitro. The increased phagocytic killing of the perR mutant was abrogated in the presence of the general oxidative burst inhibitor diphenyleneiodonium chloride (DPI), a result that suggests PerR-dependent gene expression counteracts the phagocyte oxidative burst. Moreover, an isogenic perR mutant was severely attenuated in a baboon model of GAS pharyngitis. In competitive infection experiments, the perR mutant was cleared from two animals at 24 h and from four of five animals by day 14, in sharp contrast to wild-type bacteria that persisted in the same five animals for 28 to 42 d. GAS genomic microarrays were used to compare wild-type and perR mutant transcriptomes in order to characterize the PerR regulon of GAS. These studies identified 42 PerR-dependent loci, the majority of which had not been previously recognized. Surprisingly, a large proportion of these loci are involved in sugar utilization and transport, in addition to oxidative stress adaptive responses and virulence. This finding suggests a novel role for PerR in mediating sugar uptake and utilization that, together with phagocytic killing resistance, may contribute to GAS fitness in the infected host. We conclude that PerR controls expression of a diverse regulon that enhances GAS resistance to phagocytic killing and allows adaptation for survival in the pharynx

    Panel 4 : Report of the Microbiology Panel

    Get PDF
    Objective. To perform a comprehensive review of the literature from July 2011 until June 2015 on the virology and bacteriology of otitis media in children. Data Sources. PubMed database of the National Library of Medicine. Review Methods. Two subpanels comprising experts in the virology and bacteriology of otitis media were created. Each panel reviewed the relevant literature in the fields of virology and bacteriology and generated draft reviews. These initial reviews were distributed to all panel members prior to meeting together at the Post-symposium Research Conference of the 18th International Symposium on Recent Advances in Otitis Media, National Harbor, Maryland, in June 2015. A final draft was created, circulated, and approved by all panel members. Conclusions. Excellent progress has been made in the past 4 years in advancing our understanding of the microbiology of otitis media. Numerous advances were made in basic laboratory studies, in animal models of otitis media, in better understanding the epidemiology of disease, and in clinical practice. Implications for Practice. (1) Many viruses cause acute otitis media without bacterial coinfection, and such cases do not require antibiotic treatment. (2) When respiratory syncytial virus, metapneumovirus, and influenza virus peak in the community, practitioners can expect to see an increase in clinical otitis media cases. (3) Biomarkers that predict which children with upper respiratory tract infections will develop otitis media may be available in the future. (4) Compounds that target newly identified bacterial virulence determinants may be available as future treatment options for children with otitis media.Peer reviewe

    Streptococcus pneumoniae biofilm formation and dispersion during colonization and disease.

    Get PDF
    Streptococcus pneumoniae (the pneumococcus) is a common colonizer of the human nasopharynx. Despite a low rate of invasive disease, the high prevalence of colonization results in millions of infections and over one million deaths per year, mostly in individuals under the age of 5 and the elderly. Colonizing pneumococci form well-organized biofilm communities in the nasopharyngeal environment, but the specific role of biofilms and their interaction with the host during colonization and disease is not yet clear. Pneumococci in biofilms are highly resistant to antimicrobial agents and this phenotype can be recapitulated when pneumococci are grown on respiratory epithelial cells under conditions found in the nasopharyngeal environment. Pneumococcal biofilms display lower levels of virulence in vivo and provide an optimal environment for increased genetic exchange both in vitro and in vivo, with increased natural transformation seen during co-colonization with multiple strains. Biofilms have also been detected on mucosal surfaces during pneumonia and middle ear infection, although the role of these biofilms in the disease process is debated. Recent studies have shown that changes in the nasopharyngeal environment caused by concomitant virus infection, changes in the microflora, inflammation, or other host assaults trigger active release of pneumococci from biofilms. These dispersed bacteria have distinct phenotypic properties and transcriptional profiles different from both biofilm and broth-grown, planktonic bacteria, resulting in a significantly increased virulence in vivo. In this review we discuss the properties of pneumococcal biofilms, the role of biofilm formation during pneumococcal colonization, including their propensity for increased ability to exchange genetic material, as well as mechanisms involved in transition from asymptomatic biofilm colonization to dissemination and disease of otherwise sterile sites. Greater understanding of pneumococcal biofilm formation and dispersion will elucidate novel avenues to interfere with the spread of antibiotic resistance and vaccine escape, as well as novel strategies to target the mechanisms involved in induction of pneumococcal disease

    Measuring Niche-Associated Metabolic Activity in Planktonic and Biofilm Bacteria

    No full text
    Most pathobionts of the respiratory tract form biofilms during asymptomatic colonization to survive and persist in this niche. Environmental changes of the host niche, often resulting from infection with respiratory viruses, changes of the microbiota composition, or other host assaults, can result in biofilm dispersion and spread of bacteria to other host niches, resulting in infections, such as otitis media, pneumonia, sepsis, and meningitis. The niches that these bacteria encounter during colonization and infection vary markedly in nutritional availability and contain different carbon sources and levels of other essential nutrients needed for bacterial growth and survival. As these niche-related nutritional variations regulate bacterial behavior and phenotype, a better understanding of bacterial niche-associated metabolic activity is likely to provide a broader understanding of bacterial pathogenesis. In this chapter, we use Streptococcus pneumoniae as a model respiratory pathobiont. We describe methods and models used to grow bacteria planktonically or to form biofilms in vitro by incorporating crucial host environmental factors, including the various carbon sources associated with specific niches, such as the nasopharynx or bloodstream. We then present methods describing how these models can be used to study bacterial phenotypes and their association with metabolic energy production and the generation of fermentation products
    corecore