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Abstract

Objective. To perform a comprehensive review of the litera-
ture from July 2011 until June 2015 on the virology and bac-
teriology of otitis media in children.

Data Sources. PubMed database of the National Library of
Medicine.

Review Methods. Two subpanels comprising experts in the vir-
ology and bacteriology of otitis media were created. Each
panel reviewed the relevant literature in the fields of virology
and bacteriology and generated draft reviews. These initial
reviews were distributed to all panel members prior to meet-
ing together at the Post-symposium Research Conference of
the 18th International Symposium on Recent Advances in
Otitis Media, National Harbor, Maryland, in June 2015. A final
draft was created, circulated, and approved by all panel
members.

Conclusions. Excellent progress has been made in the past 4
years in advancing our understanding of the microbiology of
otitis media. Numerous advances were made in basic labora-
tory studies, in animal models of otitis media, in better under-
standing the epidemiology of disease, and in clinical practice.

Implications for Practice. (1) Many viruses cause acute otitis
media without bacterial coinfection, and such cases do not
require antibiotic treatment. (2) When respiratory syncytial
virus, metapneumovirus, and influenza virus peak in the
community, practitioners can expect to see an increase in
clinical otitis media cases. (3) Biomarkers that predict which
children with upper respiratory tract infections will develop
otitis media may be available in the future. (4) Compounds
that target newly identified bacterial virulence determinants
may be available as future treatment options for children
with otitis media.
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Introduction

Otitis media (OM) is caused by viral and/or bacterial infec-

tion of the middle ear (ME) space and the resulting host

response to infection. Important new work has been pub-

lished in the areas of microbial pathogenesis, molecular epi-

demiology, genomics, new viruses, and polymicrobial

interactions. This report provides an overview of important

recent research in these areas.

Methods

The panel reviewed PubMed to identify important articles

related to the microbiology of OM published between July

2011 and June 2015. Keywords included otitis media and

Streptococcus pneumoniae (Spn), nontypeable Haemophilus

influenzae (NTHi), or Moraxella catarrhalis (Mcat) or indi-

vidual respiratory viruses. Members drafted initial reports

summarizing advances in their areas of expertise before a

composite draft document was circulated to all panel
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members prior to the conference. The panel met at the con-

ference, where the draft was reviewed, additional articles

added, and research goals proposed. A final draft was circu-

lated to all panel members for approval following the

conference.

Discussion

Virology

Experimental animal/in vitro models. Short et al developed an

infant mouse model to study influenza A virus (IAV)- and

Spn-induced OM.1 Compared with single challenge, coin-

fection was associated with greater bacterial burden, inflam-

matory cell influx into the ME, and concordant hearing loss.

IAV-induced inflammation contributed to Spn transmission

among cohoused naive and Spn-colonized mice.2 H3N2

hemagglutinin facilitated Spn-induced OM via activation of

proinflammatory mediators.3 Binding of hemagglutinin to

host a2,6-linked sialic acid was negated as a factor

promoting viral replication in the ME or secondary bacterial

OM.4 Wren et al5 showed that transparent colony pheno-

types of Spn were more adherent than opaque in vitro and

that IAV-induced inflammation abrogates this defect in

vivo.

It was reported that live attenuated influenza vaccine

(LAIV) promotes Spn colonization.6 Mina and coworkers7

used a murine model to show greater incidence and duration

of Spn-induced ME disease after live attenuated influenza

vaccine inoculation. Tong et al8 demonstrated that C1qa and

factor B deficiencies yielded greater bacterial and viral bur-

dens in IAV and Spn coinfected mice and that lacking C5a

receptor resulted in fewer Spn in the ME regardless of IAV

infection.

McGillivary et al9 identified viperin as a respiratory tract

antiviral protein in chinchillas. Transduction of adeno-

associated virus encoding viperin into the nasopharynx of

chinchillas who were then challenged with respiratory syn-

cytial virus (RSV) limited RSV titers. Murrah et al10

showed that prior infection with adenovirus type 5 resulted

in greater proportion of Spn-infected ME compared with no

virus in the chinchilla. Brockson et al11 developed a chinch-

illa model of Mcat-induced OM whereby sequential intrana-

sal inoculation of NTHi, Mcat, and RSV resulted in culture-

positive ME for 11 days.

Epidemiologic, clinical, and viral diagnostics. Peak activity of

RSV, metapneumovirus, and influenza A coincided with

pediatric office visits for acute OM (AOM).12 In children

with history of recurrent OM undergoing ventilation tube

insertion,13 71% of ME fluids (MEFs) contained viruses,

mostly rhinovirus. In children with acute otorrhea, viruses

were detected in 58% of nasopharyngeal samples and 21%

of otorrhea samples.14 In a longitudinal study,15 viruses

were detected in 76% of upper respiratory tract infection

(URI) specimens and 27% of asymptomatic specimens.

Asymptomatic viral infections were not complicated by

AOM. Viral load was higher in URI specimens than in

asymptomatic specimens but did not differentiate URI with

and without AOM complication.

The clinical relevance of samples positive for rhinovirus

RNA was determined by pyrosequencing 179 rhinovirus

strains from successive nasopharyngeal specimens from

infants.16 Prolonged presence of rhinovirus .30 days occurred

in only 4.5%, suggesting that detection of rhinovirus RNA

most likely represents an infection within 30 days.

The clinical spectrum of AOM complicating URI was

described in 294 children.17 During days 1 to 7 of URI

onset, AOM was documented in 22%. AOM presented at

various stages from mild to severe, with perforation.

Ede et al18 studied lactate dehydrogenase concentrations in

nasopharyngeal secretions from children with URI. High lac-

tate dehydrogenase concentrations were associated with AOM,

especially during the first 4 days of URI, and with adenovirus,

bocavirus, and rhinovirus infections. Christensen et al reported

no correlation between AOM severity and C-reactive protein,

peripheral blood white blood cell count, or the absolute neutro-

phil count.19

Role of specific viruses. In hospitalized children in Greece,

AOM was diagnosed in higher proportions of children with

seasonal influenza A than in those with 2009 H1N1 pandemic

influenza A,20 suggesting the lower ability of pandemic virus

to induce AOM. In Texas, infants were followed for URI and

AOM through a 31-month period before, during, and after the

influenza A pandemic.21 The pandemic virus did not increase

the prevalence of URI or AOM but did increase parents’

awareness and resulted in more parent-initiated health care

visits for respiratory infections.

In Croatia, AOM was diagnosed in 28% of hospitalized

children with adenovirus.22 In Finland, parechovirus was

found in 12% of 100 children with AOM23; in 4 (33%) chil-

dren, parechovirus was detected in the MEF with no

bacteria.

Primary human bocavirus 1 (HBoV1) infection was associ-

ated with symptomatic URI and AOM by serology.24 Many

studies reported human bocavirus (HBoV) detection in the naso-

pharynx and/or MEF of children with OM.25-28 In Taiwan,25

HBoV was detected in throat swabs from 35 of 705 children

with acute respiratory infection, 3 of whom had AOM. In a

study of 707 nasopharyngeal samples from 201 children with

URI, HBoV1 was detected in 24% and was the only virus in

6%.28 HBoV1 appeared to be ototropic; 52% of children with

URI and HBoV1 had only AOM. In 2 prospective studies,

HBoV1 could be detected repeatedly from the nasopharyngeal

samples even 3 months apart.26,28 Because HBoV may have a

prolonged presence in the nasopharynx, the clinical significance

of HBoV positivity during URI and AOM is still debatable. In

children with URI, HBoV1 viral load was not associated with

presence of AOM.26

In a prospective study, 7% of URI episodes were positive

for human metapneumovirus (HMPV).29 In 3.6% of URI

episodes, HMPV was the only virus; of these, 24% were

complicated by AOM. HMPV viral load was not associated

with AOM.
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Polyomavirus was detected in MEFs of children with a

history of recurrent OM who underwent ventilation tube

insertion.13 Enterovirus C118 was detected in 2 children

with AOM and community-acquired pneumonia.30

Viral-bacterial interactions. Van den Bergh et al described dis-

tinct bacterial-bacterial, viral-bacterial, and viral-viral asso-

ciations in 986 nasopharyngeal samples from asymptomatic

children.31 Pettigrew et al reported increased AOM risk

with high RSV viral load plus Spn or NTHi and with boca-

virus and NTHi.32 Ruohola et al studied nasopharyngeal

samples from children with URI/AOM.33 RSV, without

presence of bacteria, was associated with AOM risk. In

Australian indigenous children, bacterial loads were higher

in children with AOM compared with children without.34

Children infected with adenovirus were 3 times more likely

to have AOM.

In 10 adult volunteers inoculated with rhinovirus, each had

a unique bacterial profile; bacterial load did not change during

rhinovirus infection.35 Based on 16SrRNA sequencing, the

most abundant genus in the nasopharyngeal samples was

Alloiococcus, followed by Corynebacterium, Staphylococcus,

Haemophilus, Propionibacterium, and Streptococcus.36 There

was greater diversity of bacterial flora in rhinovirus infected

compared with uninfected subjects. Neisseria and Propioni-

bacterium genera differed significantly between these groups.

In South African children with human immunodeficiency virus

infection, spectrum of viral URI and bacterial OM were simi-

lar to those in uninfected children.37

Bacteria: Nontypeable Haemophilus influenzae

Pathogenesis. Hallstrom and coworkers reported the laminin-

binding region of protein E was localized to the N-terminus

and protein E bound to the heparin-binding C-terminal glob-

ular domain of laminin.38 Lee and coworkers identified sig-

naling pathways critical to development of ME granulation

tissue.39 TGF-b was upregulated in MEs with OM. TGF-b

pathway products were higher in NTHi-infected ears than in

pneumococci-infected ears. Oh and coworkers studied inner

ear inflammation40 and found that inner ear spiral ligament

fibrocytes released CXCL2 in response to NTHi via c-Jun

activation, leading to recruitment of polymorphonuclear

cells to the cochlea, and that MEK1/ERK2 signaling is

required for NTHi-induced CXCL2 upregulation. Preciado

and colleagues examined signaling pathways involved with

ME metaplasia following transtympanic inoculation of

Balb/c mice with NTHi lysates.41 Microarrays showed that

CXCL2 had the largest fold change, with increased expres-

sion at 1 and 7 days after NTHi injection.

Harrison and colleagues examined the contribution of Fur

in acquisition of iron.42 Most genes encoding proteins with

roles in iron utilization were repressed by Fur. In the chinch-

illa, Fur was critical for bacterial persistence. Whitby and col-

leagues described transcription profiles of iron-related genes in

vitro and in vivo.43 The core of iron- and heme-responsive

genes consisted of 35 genes maximally expressed under heme

restriction and 20 more maximally expressed in heme-replete

conditions. Most core modulon members were upregulated in

the chinchilla ME during OM.

Harrison and coworkers studied genetic loci important in

the stress response.44 A catalase hktE mutant and a peroxire-

doxin/glutaredoxin pgdX hktE double mutant were more

sensitive than the parent to H2O2 killing. The pgdX mutant

was more resistant to H2O2 due to increased catalase activ-

ity. Binding of iron by Dps mitigated the effect of H2O2-

mediated killing. An isogenic strain lacking hktE and pdgX

had increased susceptibility to peroxide.45 These strains had

persistence defects in chinchilla OM and in a murine model

of chronic obstructive pulmonary disease (COPD).

Raffel and coworkers explored the contribution of Sap to

NTHi interaction with the host epithelium.46 SapA-deficient

NTHi demonstrated increased invasion compared with the

parent strain. Upon internalization, the sapA mutants appeared

free in the cytoplasm, whereas the parent strain was found in

endosomes, indicating differential subcellular trafficking.

Reduced inflammatory cytokines were produced by the epithe-

lium in the sapA mutant, and chinchilla MEs challenged with

the sapA mutant showed decreased disease severity.

Biology of NTHi, biofilms. Pang and coworkers examined the

contribution of Dps to NTHi survival in biofilms.47 A dps

mutant had a survival defect in high-iron conditions, which

was mediated by oxidative stress and restored by genetic

complementation. No differences were observed in density

and structure of biofilms produced by the parent and dps

mutant, but survival was decreased in mutant biofilms.

Mutant survival was less in chinchilla OM and the mouse

pulmonary clearance model.

Jones and coworkers examined the contribution of extra-

cellular DNA (eDNA) to biofilms.48 Recombinant hBD-3,

or (r)hBD-3, bound eDNA in vitro, and eDNA in biofilms

in the chinchilla ME colocalized with the chinchilla hBD-3

equivalent. Incubation of (r)hBD-3 with NTHi genomic

DNA prevented (r)hBD-3 from inhibiting NTHi biofilm for-

mation in vitro. Establishment of NTHi biofilms in the pres-

ence of DNase I and (r)hBD-3 caused a reduction in biofilm

height and thickness and rescued the antimicrobial activity

of the AMP.

Puig and coworkers studied NTHi from patients with

nonbacteremic community-acquired pneumonia, COPD,

OM, and invasive disease and from healthy colonized chil-

dren for ability to form biofilms.49 Increased biofilm forma-

tion was observed for NTHi from patients with invasive

disease and OM as compared with NTHi from other

patients. Isolates from the oropharynx and MEF had more

phosphorylcholine and made denser biofilms than isolates

from sputum of patients with COPD or nonbacteremic

community-acquired pneumonia. No correlation was found

between biofilm formation and the presence of phosphoryl-

choline in lipooligosaccharide (LOS).

Cho and coworkers examined the role of nuclease.50

They demonstrated biofilm dispersal in the parent strain, no

dispersal in a nuclease mutant, and partial dispersal in a

complemented mutant. Microscopic analysis of biofilms
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showed increased nucleic acid matrix in the nuclease

mutant. The nuclease mutant formed a biofilm in chinchilla

OM and demonstrated a propensity to form large aggregates

of organisms.

Genetics and genomic studies of NTHi. Using multilocus

sequence typing, LaCross and coworkers identified 109

sequence types among 170 commensal and OM-associated

isolates from Finland, Israel, and the United States.51 The

largest clonal complex contained 5 sequence types. Little

clustering was apparent by disease state or geography.

Population structure was evident, with support for 8 popula-

tions when all isolates were analyzed.

Zhang and colleagues found the urease operon more pre-

valent in NTHi causing OM and COPD-associated bronchi-

tis than NTHi from throats of healthy individuals.52 Strains

lacking the operon were much more likely to be from the

throat than from OM or COPD isolates.

LaCross and coworkers found 47 hemin receptor (HemR)

amino acid sequences among 146 isolates.53 The predicted

structure of HemR was similar to TonB-dependent, ligand-gated

channels involved in iron acquisition in other bacteria. Fifteen

amino acid polymorphisms were more prevalent among com-

mensal than otitis isolates. After controlling for population struc-

ture, only 7 polymorphisms retained significance.

Hariadi and coworkers compared the heme acquisition

gene profiles of disease-causing and colonizing NTHi and

Haemophilus haemolyticus.54 Four of 5 heme acquisition

genes (hxuA, hxuB, hxuC, and hemR) were more prevalent

in ME compared with throat strains. All 5 genes were more

prevalent in NTHi than in H haemolyticus.

Interactions with the host immune system. Langereis and col-

leagues reported increased complement resistance in NTHi

from the ME, correlating with decreased binding of IgM.55

NTHi gene R2866_0112 had a role in complement resis-

tance: gene deletion altered the LOS and increased IgM

binding and complement-mediated lysis. In a mouse model,

the R2866_0112 mutant was less virulent. The group also

reported that NTHi prevented complement-dependent

neutrophil-mediated killing: expression of surface oligo-

saccharides blocked recognition of a critical LOS epitope

by replacement with galactose attached to HepIII or

through shielding HepIII-b 1,2-Glc by attachment of oli-

gosaccharide chain extensions.56

Wang and coworkers examined the role of deubiquitinase

cylindromatosis (CYLD) in NTHi-induced inflammation.57

They reported that in human lung A549 cells and lungs of

Cyld–/– mice, CYLD targets the activation of ERK. CYLD

also enhanced NTHi-induced upregulation of MAP kinase

phosphatase-1, which led to reduced ERK activation and

subsequent suppression of IL-8.

Woo and coworkers demonstrated that human ME

epithelial cells upregulated DEFB4 (human b-defensin 2) in

response to NTHi via NF-kB activation.58 Deletion of the

distal NF-kB binding motif caused reduction in NTHi-

induced DEFB4 upregulation. Internalized NTHi existed

free in the cytoplasm of epithelial cells after rupturing the

surrounding membrane.59 Human ME epithelial cells inhib-

ited NTHi-induced b-defensin 2 production by NOD2 silen-

cing but augmented it by NOD2 overexpression. NOD2

deficiency reduced inflammatory reactions following intra-

tympanic injection of NTHi and inhibited NTHi clearance

from the ME.

Woo and coworkers studied cochlear inflammation in

NTHi OM60 and found that IL-10 receptors were expressed

in lateral wall spiral ligament fibrocytes. Rat spiral ligament

fibrocyte cells inhibited NTHi-induced upregulation of

MCP-1 (monocyte chemotactic protein 1) in response to IL-

10. Inhibition was suppressed by silencing IL-10R1 and was

mimicked by cobalt protoporphyrin IX and CO-releasing

molecule 2. IL-10 suppressed monocyte recruitment through

reduction of spiral ligament fibrocyte chemoattractants. IL-

10 inhibited NTHi-induced binding of p65 NF-kB to the

distal motif in the promoter region of MCP-1/CCL2, result-

ing in suppression of NF-kB activation.

Streptococcus pneumoniae

Genomics. High-throughput sequencing projects continue to

inform our understanding of Spn pathogenesis.61 Small non-

coding RNAs were identified in Spn through RNA sequencing.

Targeted deletions and transposon mutagenesis demonstrated

that specific small noncoding RNAs were required for tissue-

specific virulence.62 The genome sequence of a multidrug-

resistant serotype 19F OM isolate was recently published63

and will complement pathogenesis studies.64 A whole genome

sequencing study of 616 Spn isolates examined the impact of

PCV-7 on S pneumoniae. Rates of recombination differed

across lineages, and pneumococcal strains appear to evolve by

mutation at a consensus rate of 1.0 3 1026 to 1.5 3 1026

mutations per base per year. Capsule switches occurred

between related lineages, and most preceded introduction of

conjugate vaccines. These data indicate that common post-

PCV lineages arose by replacement of vaccine serotypes by

nonvaccine serotypes that were rare prior to introduction of

conjugate vaccines.65 A whole genome sequencing study of

3085 Spn isolates from children identified hotspots for recom-

bination that included genes encoding antibiotic resistance and

the PspA and PspC surface antigens.66

Mechanisms of Pathogenesis

Biofilms. A proteomic study showed that biofilm bacteria

utilize alternative metabolic pathways and downregulate

capsule and other virulence factors as compared with

planktonic pneumococci.67 Biofilm pneumococci show an

avirulent phenotype and are unable to cause AOM in some

animal model systems.68-70 Marks and coworkers recently

showed that changes in the nasopharyngeal environment

(including influenza A virus infection) and resulting host

changes (including increased temperature, release of ATP

and norepinephrine) caused dispersion of nasopharyngeal

biofilm bacteria and that the dispersed bacteria ascended

the eustachian tube and caused AOM.70 Dispersed bacteria

exhibit different transcriptional profiles than biofilm
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bacteria71; virulence factors—including capsule, pspA, ply,

pcpA, nanA, nanB, and bacteriocins—were upregulated,

whereas competence genes and adhesins were downregu-

lated. A shift from purine/pyrimidine and amino acid meta-

bolism to carbohydrate metabolism occurred.71

In rodent models, Mcat was found to increase ascension

of pneumococci into the ME, and pneumococci increased

the bacterial burden of Mcat. Additionally, Mcat conferred

passive protection against b-lactam killing of pneumococci

in dual biofilms.72

Biofilm formation and horizontal gene transfer. Recent studies

have implicated host GalNAc as a receptor important for

biofilm formation73 and a number of virulence factors,

including Ply, CpbA/PspC, and PhpP in biofilm forma-

tion.74-76 Quorum sensing through the LuxS/AI-2 system

and competence is required for optimal biofilm forma-

tion.77-79 Additionally, interaction with epithelial cells

improves biofilm formation in vitro.76,80,81 A major portion

of pneumococcal biofilm matrix comes from cells lysed by

the major autolysin LytA or through fratricide.81,82 The

matrix consists of cellular debris, including DNA and DNA-

protein complexes in which LytC appears to be a major

component.83 DNA in the matrix makes the biofilm envi-

ronment optimal for genetic exchange of fitness and antibio-

tic resistance genes.82,84

Biofilm treatment. Lysins effectively disrupt pneumococcal

in vitro biofilms.85,86 The quorum-sensing inhibitor yd47

prevents biofilm formation in vitro and OM in a guinea pig

model.87 Macrolides and fluoroquinolones are the most

effective antibiotics for disrupting biofilms in vitro.88 The

sensitizing milk protein HAMLET increases the potency of

antibiotics to both sensitive and resistant pneumococcal

strains.89

Complement. Phosphoglycerate kinase and elongation factor

Tu were shown to be pneumococcal complement regulatory

proteins.90,91 Phosphoglycerate kinase inhibits assembly of

the membrane attack complex, and elongation factor Tu

binds factor H. In a mouse model of OM, investigators

tested the complement-mediated killing of transparent and

opaque colony forms.92 More complement was deposited on

the transparent phenotype and was dependent on the alterna-

tive pathway. Capsule switching from 6A to 6C was accom-

panied by a reduction in complement C3 deposition from

the donor strain associated with increased virulence in an

OM model in the chinchilla.93 Children with OM were

shown to upregulate genes associated with the classical and

alternative pathways in peripheral blood monocytes.94

Capsule. Regulation of capsule is critical for pneumococ-

cal pathogenesis.95 A mutation in the gene encoding the

arginine transporter ArcD caused a reduction in capsule pro-

duction and ability to cause OM in a chinchilla model,

likely due to differences in the surface association of cap-

sule.96 A study demonstrated that a laboratory-generated

capsular switch led to increased pathogenesis in a chinchilla

barotrauma model of AOM.93 In another barotrauma model

of OM, serotype 6C strains showed reduced ability to pro-

duce ME disease as compared with serotype 19A isolates.97

This correlates with the increased ability of 19A isolates to

cause AOM and may relate to differences in levels of com-

plement binding.97,98

Up to 16% of Spn carriage isolates do not encode cap-

sule66 and strains lacking capsule have been isolated from

OM and can cause OM in chinchillas.99 Nonencapsulated

Spn, distinct from those to which capsule cannot be assigned,

are divided into those that contain a capsule locus but are

defective in production and those that lack the locus. This

second group is divided into 3 null capsule clades (NCCs):

pspK positive (NCC1), pspK negative but with aliC and aliD

in place of the capsule locus (NCC2), and strains with aliD

but not aliC (NCC3).100,101 PspK binds secretory IgA,

increases adherence to epithelial cells, and enhances coloni-

zation in a mouse model.101,102 All 8 pspK1 isolates tested

and half of naturally pspK-negative nontypeable isolates

caused AOM following transbullar inoculation.103 When

pspK was deleted, reduced bacterial burden and decreased

pathology were observed. Introduction of pspK into the unen-

capsulated strain R36A enabled this avirulent strain to cause

AOM.103 Classic nonencapsulated lineages may play a role

in pneumococcal OM as sources of antibiotic resistance

genes.66,104

Glycosidases. Glycosidases provide pneumococci with

carbohydrates—for example, hyaluronic acid can be degraded

and used as a carbon source.105 Pneumococcal b-galactosidase

BgaA binds to host cell surface galactose b,1-4–linked carbo-

hydrates following sialic acid removal by NanA and may rep-

resent a new family of adhesins.106,107 Increased GalNAc

residues are present along the eustachian tube and in submuco-

sal serous glands during infection and may serve as receptors

for adherence.73,108

Mucin production can be synergistically increased in the

presence of pneumococci and NTHi.109-111 How pneumo-

cocci reach the epithelial cell surface through the mucins is

unclear. Production of a truncated and secreted zinc metal-

loproteinase by some strains allows cleavage of MUC16

from epithelial cells, penetration of the glycocalyx, and

increased adherence.112,113

Additional pathogenesis papers. Cyclic-di-AMP regulates

complex cellular processes that can be degraded by phos-

phodiesterases.114 Cron et al identified 2 pneumococcal

cyclic-di-AMP phosphodiesterases (Pde1 and Pde2) that

contribute to OM in a murine model.115,116 Single mutants

in PspA, CbpA, and pneumolysin were significantly reduced

in bacterial counts in the chinchilla OM model, although the

CbpA mutant was only mildly attenuated.117,118 A double

PspA/CbpA mutant was reduced in pathogenicity similar to

the PspA mutant, but a PspA/pneumolysin double mutant

showed no reduction in pathogenicity.

Polymicrobial interactions. Profiling studies in children based

on 16S rRNA highlight the association among the respira-

tory microbiota, Spn colonization, and OM susceptibility.119-

Barenkamp et al S55



121 Taxa, including Staphylococcus, have been negatively asso-

ciated with colonization by Spn.120Corynebacterium and

Dolosigranulum have been shown to be protective for develop-

ment of OM.121Actinomyces, Rothia, Neisseria, and Veillonella

were associated with increased odds of AOM.121

Moraxella catarrhalis

Genomics of Mcat. Davie and colleagues compared 12 geno-

mic sequences122 and observed a surprising degree of gene

conservation; in addition to conserved core genes, a set of

.600 unevenly distributed gene clusters was observed, and

there was a low rate of mobile genetic elements.123 A geno-

mic sequence was released for Mcat BBH18, an isolate

from a COPD patient,124,125 and it had 10 unique open read-

ing frames (ORFs), including 8 in a contiguous region of

the genome.

Epigenetic variation. Phase-variable DNA methyltransferases

(modM) were described in Mcat, and differential methyla-

tion was demonstrated in accordance with phase status of

mutant strains.126 Analysis Mcat isolates from carriage and

disease revealed 3 modM alleles (modM1, modM2, and

modM3); modM3 was disproportionately represented in the

OM isolates.

Transcript profiling. Hansen’s group constructed a microarray

based on Mcat ATCC 43617 to perform transcript profiling.

Hoopman et al studied exposure to oxidant and observed

increased expression for oxyR, catalase (katA), and peroxi-

dase (ahpCF), with results validated by real-time polymer-

ase chain reaction and confirmation of oxidant sensitivity

phenotypes for isogenic mutants.127

The same group used microarrays to study colonization

of the chinchilla nasopharynx.128 Growth in vivo demon-

strated .100 gene products with increased expression and

.200 with decreased expression: increased expression for

at least 5 regulatory genes and increased expression of

nitrate/nitrite metabolism genes, most notably aniA, with

the latter suggesting that the Mcat population is in a biofilm.

Several surface factors associated with adherence (hag,

mcaP, and mchA1) were decreased in the colonizing popu-

lation. An Mcat isogenic mutant was generated in MC ORF

1550 that was shown to confer a fitness defect in chinchilla

nasopharyngeal infections.

Identification of essential genes. Mobegi et al generated a

transposon mutant library in Mcat BBH18 analyzed by deep

sequence analysis to identify ORFs not represented in the

viable transposon mutant pools.129 In sum, 445 potentially

essential genes were identified with functions including bio-

synthesis of fatty acids, vitamins, and isoprenoids. Lead

compounds targeting these pathways were shown to have

efficacy against Mcat, and other OM pathogens.

Metabolism and growth. Genes required for survival of Mcat

in iron-limiting conditions were identified by a transposon

library screen using Tn-seq.130 Five ORFs were identified in

1 Mcat strain as necessary for survival in low-iron

conditions. Validation in additional Mcat strains revealed

that the most significant among multiple strains was yggW,

predicted to function in heme acquisition.

Spaniol and colleagues performed transcriptome analyses

to find genes with increased expression in low tempera-

ture.131 They observed increased expression of several

genes indicating membrane remodeling: an efflux pump, a

porin, and other outer membrane proteins. The most notable

finding concerned expression of the type IV pilus,132 which

was also increased. This was phenotypically verified as the

efficiency of DNA uptake, and transformation was increased

at the lower temperature.

Mechanisms of pathogenesis. Using Tn-seq, de Vries and col-

leagues identified 15 genes that were important to colonization

of immortalized epithelial cells,133 including a glycosyltrans-

ferase (lgt1) involved in LOS biosynthesis,134,135 a putative

lipoprotein and an outer membrane protein, entericidin

(ecnAB), and a regulator with homology to the BadM family.

Adherence phenotypes were confirmed with isogenic mutant

strains.

Hansen and colleagues used microarray to identify tran-

scripts with increased levels during colonization of immor-

talized 16HBE14 human bronchial epithelial cells.136 They

identified a lipoprotein (ORF113) with increased expression

shown to affect persistence of Mcat within the chinchilla

nasopharynx.

Buskirk and Lafontaine showed that synthesis of cardiolipin

was a determinant of survival of Mcat O35E on immortalized

epithelial cells, as an isogenic mclS strain lacking cardiolipin

had lower recovery from cell infection studies.137

Lgt3 is a LOS glucosyltransferase that has been shown to

mediate addition of b-(1,4) Glc moieties to the inner core of

the LOS.134 Recently, the function of Lgt3 was shown to be

more complex and to include separate transferase domains

that mediate addition, respectively of b-(1,3) Glc (domain

1) and b-(1,4) Glc and b-(1,6) Glc (domain 2).138

Implications for Clinical Practice and
Research Goals

The advances of the past 4 years have several implications

for clinical practice (Table 1). They also form the basis for

the panel’s proposed research goals for the microbiology of

OM:

1. The role of inflammatory mediators and their

mechanisms of action in AOM pathogenesis fol-

lowing viral URI should be studied.

2. The impact of viral and bacterial load in the naso-

pharynx on generation of local inflammation,

AOM development, disease severity, and outcome

should be studied.

3. The significance of newly detected viruses, multi-

ple virus infection, and persistent viral infection

should be examined.

4. Extend animal models of OM to include common

URI viruses, such as rhinovirus.
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5. Evaluate whether specific viruses interact with

specific bacteria and elucidate mechanisms of

viral-bacterial interaction on the mucosal level.

6. Understand how OM pathogens interact with one

another and with commensals in the nasopharynx

and ME.

7. Prevention of AOM by prevention and/or early

treatment of viral URI should be studied.

8. Understand host genetics in URI susceptibility

and AOM development following URI.

9. Additional studies to longitudinally examine the

microbiota in the nasopharynx and ME.

10. Exploit advances in bacterial genomics to understand

mechanisms of pathogenesis, molecular epidemiol-

ogy, and emerging antimicrobial resistance patterns.

11. Develop therapeutics effective against biofilms by

further studying their role in pathogenesis.

12. Understand how OM pathogens interact with one

another and with commensals in the nasopharynx

and ME.

13. Better understand the pathogenesis of nontypeable

Spn OM.
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