24 research outputs found
Estimating changes in ocean ventilation from early 1990s CFC-12 and late 2000s SF6 measurements
Transient tracer measurements can constrain the rates and pathways of ocean ventilation and act as proxies for biogeochemically relevant gases such as CO2 and oxygen. Various techniques have deduced changes in ocean ventilation over decadal timescales using transient tracer measurements made on repeat sections, but these require a priori assumptions about mixing in the ocean interior. Here, we introduce a simple, direct observational method that takes advantage of the similar atmospheric increase rates of chlorofluorocarbon-12 and sulfur hexafluoride, but with a time lag (offset) of 1415 years. Such repeat measurements can be directly compared without prior assumptions about mixing. A difference larger than similar to 2 years between modern sulfur hexafluoride and historical chlorofluorocarbon-12 tracer ages implies a change in ventilation, although lack of difference does not necessarily imply no change. Several tracer data sets are presented, which suggest changes in ventilation in the South Pacific and North Atlantic Oceans
An extreme case of plant-insect co-diversification: figs and fig-pollinating wasps
It is thought that speciation in phytophagous insects is often due to colonization of novel host plants, because radiations of plant and insect lineages are typically asynchronous. Recent phylogenetic comparisons have supported this model of diversification for both insect herbivores and specialized pollinators. An exceptional case where contemporaneous plant insect diversification might be expected is the obligate mutualism between fig trees (Ficus species, Moraceae) and their pollinating wasps (Agaonidae, Hymenoptera). The ubiquity and ecological significance of this mutualism in tropical and subtropical ecosystems has long intrigued biologists, but the systematic challenge posed by >750 interacting species pairs has
hindered progress toward understanding its evolutionary history. In particular, taxon sampling and analytical tools have been insufficient for large-scale co-phylogenetic analyses. Here, we sampled nearly 200 interacting pairs of fig and wasp species from across the globe. Two
supermatrices were assembled: on average, wasps had sequences from 77% of six genes (5.6kb), figs had sequences from 60% of five genes (5.5 kb), and overall 850 new DNA sequences were generated for this study. We also developed a new analytical tool, Jane 2, for event-based phylogenetic reconciliation analysis of very large data sets. Separate Bayesian
phylogenetic analyses for figs and fig wasps under relaxed molecular clock assumptions indicate Cretaceous diversification of crown groups and contemporaneous divergence for nearly half of all fig and pollinator lineages. Event-based co-phylogenetic analyses further support the co-diversification hypothesis. Biogeographic analyses indicate that the presentday distribution of fig and pollinator lineages is consistent with an Eurasian origin and subsequent dispersal, rather than with Gondwanan vicariance. Overall, our findings indicate that the fig-pollinator mutualism represents an extreme case among plant-insect interactions of coordinated dispersal and long-term co-diversification