72 research outputs found

    Impact of immunosuppressive treatment on liver fibrosis in autoimmune hepatitis

    Get PDF
    The impact of treatment on progression of fibrosis in autoimmune hepatitis (AIH) is unknown. We assessed the changes in liver fibrosis before and after treatment among these patients. Nineteen AIH patients who had paired liver biopsies were studied. Of these, seven had been treated with 6 months of cyclosporine A and the rest with 6 months of prednisolone for induction of remission. Thereafter all had been maintained on azathioprine. Biopsy specimens before and after treatment were reviewed by one pathologist and scored by the Ishak method. Mean fibrosis stages before and after treatment were compared. Also, factors predicting significant fibrosis (stage �3) and cirrhosis (stage �5) at presentation were assessed. Mean interval between biopsies was 3.38 years. Mean fibrosis stage decreased from 4.53 to 2.16 following treatment (P < 0.001). Mean decrement in inflammatory grade was 8 scores (range, 4-10) in patients in whom fibrosis improved, and 2 scores (range, 0-4) in patients in whom fibrosis did not decrease after treatment (P < 0.001). ALT-to-platelet ratio was the best predictor of significant fibrosis and also cirrhosis. Fibrosis commonly improves after immunosuppressive treatment in AIH. ALT-to-platelet ratio can predict accurately the presence of significant fibrosis and cirrhosis in AIH. © 2005 Springer Science+Business Media, Inc

    Social and occupational factors associated with psychological distress and disorder among disaster responders: a systematic review

    Get PDF
    BACKGROUND: When disasters occur, there are many different occupational groups involved in rescue, recovery and support efforts. This study aimed to conduct a systematic literature review to identify social and occupational factors affecting the psychological impact of disasters on responders. METHODS: Four electronic literature databases (MEDLINE®, Embase, PsycINFO® and Web of Science) were searched and hand searches of reference lists were carried out. Papers were screened against specific inclusion criteria (e.g. published in peer-reviewed journal in English; included a quantitative measure of wellbeing; participants were disaster responders). Data was extracted from relevant papers and thematic analysis was used to develop a list of key factors affecting the wellbeing of disaster responders. RESULTS: Eighteen thousand five papers were found and 111 included in the review. The psychological impact of disasters on responders appeared associated with pre-disaster factors (occupational factors; specialised training and preparedness; life events and health), during-disaster factors (exposure; duration on site and arrival time; emotional involvement; peri-traumatic distress/dissociation; role-related stressors; perceptions of safety, threat and risk; harm to self or close others; social support; professional support) and post-disaster factors (professional support; impact on life; life events; media; coping strategies). CONCLUSIONS: There are steps that can be taken at all stages of a disaster (before, during and after) which may minimise risks to responders and enhance resilience. Preparedness (for the demands of the role and the potential psychological impact) and support (particularly from the organisation) are essential. The findings of this review could potentially be used to develop training workshops for professionals involved in disaster response. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s40359-016-0120-9) contains supplementary material, which is available to authorized users

    Global patterns in endemicity and vulnerability of soil fungi

    Get PDF
    Fungi are highly diverse organisms, which provide multiple ecosystem services. However, compared with charismatic animals and plants, the distribution patterns and conservation needs of fungi have been little explored. Here, we examined endemicity patterns, global change vulnerability and conservation priority areas for functional groups of soil fungi based on six global surveys using a high-resolution, long-read metabarcoding approach. We found that the endemicity of all fungi and most functional groups peaks in tropical habitats, including Amazonia, Yucatan, West-Central Africa, Sri Lanka, and New Caledonia, with a negligible island effect compared with plants and animals. We also found that fungi are predominantly vulnerable to drought, heat and land-cover change, particularly in dry tropical regions with high human population density. Fungal conservation areas of highest priority include herbaceous wetlands, tropical forests, and woodlands. We stress that more attention should be focused on the conservation of fungi, especially root symbiotic arbuscular mycorrhizal and ectomycorrhizal fungi in tropical regions as well as unicellular early-diverging groups and macrofungi in general. Given the low overlap between the endemicity of fungi and macroorganisms, but high conservation needs in both groups, detailed analyses on distribution and conservation requirements are warranted for other microorganisms and soil organisms

    FungalTraits:A user-friendly traits database of fungi and fungus-like stramenopiles

    Get PDF
    The cryptic lifestyle of most fungi necessitates molecular identification of the guild in environmental studies. Over the past decades, rapid development and affordability of molecular tools have tremendously improved insights of the fungal diversity in all ecosystems and habitats. Yet, in spite of the progress of molecular methods, knowledge about functional properties of the fungal taxa is vague and interpretation of environmental studies in an ecologically meaningful manner remains challenging. In order to facilitate functional assignments and ecological interpretation of environmental studies we introduce a user friendly traits and character database FungalTraits operating at genus and species hypothesis levels. Combining the information from previous efforts such as FUNGuild and Fun(Fun) together with involvement of expert knowledge, we reannotated 10,210 and 151 fungal and Stramenopila genera, respectively. This resulted in a stand-alone spreadsheet dataset covering 17 lifestyle related traits of fungal and Stramenopila genera, designed for rapid functional assignments of environmental studies. In order to assign the trait states to fungal species hypotheses, the scientific community of experts manually categorised and assigned available trait information to 697,413 fungal ITS sequences. On the basis of those sequences we were able to summarise trait and host information into 92,623 fungal species hypotheses at 1% dissimilarity threshold

    Connecting the multiple dimensions of global soil fungal diversity

    Get PDF
    15 páginas.- 5 figuras.- 99 referenciasHow the multiple facets of soil fungal diversity vary worldwide remains virtually unknown, hindering the management of this essential species-rich group. By sequencing high-resolution DNA markers in over 4000 topsoil samples from natural and human-altered ecosystems across all continents, we illustrate the distributions and drivers of different levels of taxonomic and phylogenetic diversity of fungi and their ecological groups. We show the impact of precipitation and temperature interactions on local fungal species richness (alpha diversity) across different climates. Our findings reveal how temperature drives fungal compositional turnover (beta diversity) and phylogenetic diversity, linking them with regional species richness (gamma diversity). We integrate fungi into the principles of global biodiversity distribution and present detailed maps for biodiversity conservation and modeling of global ecological processes.This work was supported by the Estonian Science Foundation: PRG632 (to L.T.), Estonian Research Council: PRG1615 (to R.D.), Estonian Research Council: PRG1170 (to U.K. and Ka.Po.), Estonian Science Foundation: MOBTP198 (to St.An.), Novo Nordisk Fonden: NNF20OC0059948 (to L.T.), Norway-Baltic financial mechanism: EMP442 (to L.T., K.-A.B., and M.T.), King Saud University: DFSP-2020-2 (to L.T.), King Saud University: Highly Cited Program (to L.T.), European Regional Development Fund: Centre of Excellence EcolChange TK131 (to M.O., M.Z., Ü.M., U.K., and M.E.), Estonian Research Council: PRG1789 (to M.O. and I.H.), British Ecological Society: LRB17\1019 (MUSGONET) (to M.D.-B.), Spanish Ministry of Science and Innovation: PID2020-115813RA-I00 (to M.D.-B.), Spanish Ministry of Science and Innovation: SOIL4GROWTH (to M.D.-B.), Marie Sklodowska-Curie: 702057 (CLIMIFUN) (to M.D.- B.), European Research Council (ERC): grant 647038 [BIODESERT] (to F.T.M.), Generalitat Valenciana: CIDEGENT/2018/041 (to F.T.M.), Spanish Ministry of Science and Innovation: EUR2022-134048 (to F.T.M.), Estonian Research Council: PRG1065 (to M.M. and M.Z.), Swedish Research Council Formas: 2020-00807 (to Mo.Ba.), Swedish Research Council: 2019-05191 (to Al. An.), Swedish Foundation for Strategic Environmental Research MISTRA: Project BioPath (to Al. An.), Kew Foundation (to Al.An.), EEA Financial Mechanism Baltic Research Programme in Estonia: EMP442 (to Ke.Ar. and Je.An.), Ghent University Special Research Fund (BOF): Metusalem (to N.S.), Estonian Research Council: PSG825 (to K.R.), European Research Council (ERC): 101096403 (MLTOM23415R) (to Ü.M.), European Regional Development Fund (ERDF): 1.1.1.2/VIAA/2/18/298 (to D.K.), Estonian Research Council: PUT1170 (to I.H.), German Federal Ministry of Education and Research (BMBF): 01DG20015FunTrAf (to K.T.I., M.P., and N.Y.), Proyecto SIA: SA77210019 (ANID—Chile) (to C.M.), Fondecyt: 1190642 (ANID—Chile) (to R.G.), European Research Council (ERC): Synergy Grant 856506—LIFEPLAN (to T.R.), Academy of Finland: grant 322266 (to T.R.), U.S. National Science Foundation: DEB-0918591 (to T.H.), U.S. National Science Foundation: DEB-1556338 (to T.H.), U.S. National Science Foundation: DEB 1737898 (to G.B.), UNAM-PAPIIT: IV200223 (to R.G.-O.), Czech Science Foundation: 21-26883S (to J.D.), Estonian Research Council: PRG352 (to M.E.), NERC core funding: the BAS Biodiversity, Evolution and Adaptation Team (to K.K.N.), NERC-CONICYT: NE/P003079/1 (to E.M.B.), Carlsberg Foundation: CF18-0267 (to E.M.B.), Qatar Petroleum: QUEX-CAS-QP-RD-18/19 (to Ju.Al.), Russian Ministry of Science and Higher Education: 075-15-2021-1396 (to V.F. and V.O.), Secretaria de Ciencia y Técnica (SECYT) of Universidad Nacional de Córdoba and CONICET (to E.N.), HighLevel Talent Recruitment Plan of Yunnan Province 2021:“High-End Foreign Experts” (to Pe.Mo.), AUA grant from research council of UAE University: G00003654 (to S.M.), Ghent University: Bijzonder Onderzoeksfonds (to A.V.), Ghent University: Bijzonder Onderzoeksfonds (BOF-PDO2017-001201) (to E.D.C.), Ghent University: The Faculty Committee Scientific Research, FCWO (to E.D.C. and A.V.), The King Leopold III Fund for Nature Exploration and Conservation (to A.V. and E.D.C.), The Research Foundation—Flanders (FWO) (to E.D.C. and A.V.), The High-Level Talent Recruitment Plan of Yunnan Provinces: “Young Talents” Program (to D.-Q.D.), The HighLevel Talent Recruitment Plan of Yunnan Provinces: “High-End Foreign Experts" Program (to N. N.W.), IRIS scholarship for progressive and ambitious women (to L.H.), Estonian University of Life Sciences: P190250PKKH (to Kr.Pa.), Hungarian Academy of Sciences: Lendület Programme (96049) (to J.G.), Eötvös Loránd Research Network (to J.G.), Botswana International University of Science and Technology (to C.N.), and Higher Education Commision (HEC, Islamabad, Pakistan): Indigenous and International research support initiative program (IRSIP) scholarship (to M.S.)Peer reviewe

    Connecting the multiple dimensions of global soil fungal diversity

    Get PDF
    How the multiple facets of soil fungal diversity vary worldwide remains virtually unknown, hindering the management of this essential species-rich group. By sequencing high-resolution DNA markers in over 4000 topsoil samples from natural and human-altered ecosystems across all continents, we illustrate the distributions and drivers of different levels of taxonomic and phylogenetic diversity of fungi and their ecological groups. We show the impact of precipitation and temperature interactions on local fungal species richness (alpha diversity) across different climates. Our findings reveal how temperature drives fungal compositional turnover (beta diversity) and phylogenetic diversity, linking them with regional species richness (gamma diversity). We integrate fungi into the principles of global biodiversity distribution and present detailed maps for biodiversity conservation and modeling of global ecological processes

    (K 0.44

    No full text

    The CD14 gene Polymorphism in nasal polyposis

    No full text
    &quot;nBackground: CD14 is known as a receptor for bacterial LPS (Lipopolysaccharides) and is followed by inflammatory reactions. This receptor on macrophage surface has a major role for recognition and clearance was happen without inflammatory reaction. Prolonged exposure to microbial products decreases the risk of allergic reactions. This is related to high level of CD14 in blood cells. Although the causes of nasal polyposis is not obviously determined but allergy is a potential risk factor for nasal polyposis. CD14 is in 5q31 chromosomal position and CD14 variants have association with asthma. We try to assay association between CD14 polymorphism and nasal polyposis and severity of this disease.&quot;n &quot;nMethods: We had 106 patients with nasal polyps with mean age 41 y old in case group and 87 with mean age 36.7 in control group. We obtained 3 ml whole blood from each patient and then extract DNA by PCR-RFLP method and determined variant genotypes of CD14. Although there is no previous study in this field, the results of this pilot study shown in more detailed below.&quot;n &quot;nResults: There is significant relationship between C allele (CC + CT) in comparison with TT (p= 0.03, odds ratio= 1.87, CI 95% (0.99- 3.55)) and nasal polyposis. Further-more another significant relationship had been shown between asthmatic patients and C allele (CC) in comparison with (CT + TT). (p= 0.01, odds ratio= 3.8, CI (0.99- 13.9). In asthmatic patients with C allele of CD14 incidence of nasal polyposis increased.&quot;n &quot;nConclusion: Based on the results of this study, C allele of CD14 could play a role in nasal polyposis

    Transplanted human multipotent stromal cells reduce acute tongue fibrosis in rats

    No full text
    BackgroundTongue fibrosis resulting from head and neck cancer, surgery, radiation, chemotherapy, or a combination thereof devastates one's quality of life. Therapeutic options are limited. Here we investigate human bone marrow-derived multipotent stromal cells (MSC) as a novel injectable treatment for post-injury tongue fibrosis.MethodsMSCs were grown in culture. Eighteen athymic rats underwent unilateral partial glossectomy. After two weeks for scar formation, a single injection was performed in the tongue scar. Three treatment groups were studied: low and high concentration MSC, and control media injection. Tongues were harvested for evaluation at three weeks post-treatment.ResultsDense fibrosis was achieved in control animals at five weeks. High concentration MSC reduced cross sectional scar burden (P = .007) and pathologic score for inflammation and fibrosis.ConclusionThis study establishes the feasibility of a novel rodent tongue fibrosis model, and begins to assess the utility of human MSCs to reduce scar burden.Level of evidenceN/a
    corecore