29 research outputs found

    A Nonstandard Fourier Inequality

    Get PDF
    We consider a class of functions given by a class of generalized Fourier series which arise in the study of sampled-data control. These functions are continuous on the real line, but not differentiable at x=0. We prove that for all sufficiently small x \u3e 0, these functions are larger than a constant times the square root of x

    Ambient and substrate energy influence decomposer diversity differentially across trophic levels

    Get PDF
    The species-energy hypothesis predicts increasing biodiversity with increasing energy in ecosystems. Proxies for energy availability are often grouped into ambient energy (i.e., solar radiation) and substrate energy (i.e., non-structural carbohydrates or nutritional content). The relative importance of substrate energy is thought to decrease with increasing trophic level from primary consumers to predators, with reciprocal effects of ambient energy. Yet, empirical tests are lacking. We compiled data on 332,557 deadwood-inhabiting beetles of 901 species reared from wood of 49 tree species across Europe. Using host-phylogeny-controlled models, we show that the relative importance of substrate energy versus ambient energy decreases with increasing trophic levels: the diversity of zoophagous and mycetophagous beetles was determined by ambient energy, while non-structural carbohydrate content in woody tissues determined that of xylophagous beetles. Our study thus overall supports the species-energy hypothesis and specifies that the relative importance of ambient temperature increases with increasing trophic level with opposite effects for substrate energy

    Ambient and substrate energy influence decomposer diversity differentially across trophic levels.

    Get PDF
    The species-energy hypothesis predicts increasing biodiversity with increasing energy in ecosystems. Proxies for energy availability are often grouped into ambient energy (i.e., solar radiation) and substrate energy (i.e., non-structural carbohydrates or nutritional content). The relative importance of substrate energy is thought to decrease with increasing trophic level from primary consumers to predators, with reciprocal effects of ambient energy. Yet, empirical tests are lacking. We compiled data on 332,557 deadwood-inhabiting beetles of 901 species reared from wood of 49 tree species across Europe. Using host-phylogeny-controlled models, we show that the relative importance of substrate energy versus ambient energy decreases with increasing trophic levels: the diversity of zoophagous and mycetophagous beetles was determined by ambient energy, while non-structural carbohydrate content in woody tissues determined that of xylophagous beetles. Our study thus overall supports the species-energy hypothesis and specifies that the relative importance of ambient temperature increases with increasing trophic level with opposite effects for substrate energy

    Herbivory on the pedunculate oak along an urbanization gradient in Europe : Effects of impervious surface, local tree cover, and insect feeding guild

    Get PDF
    Urbanization is an important driver of the diversity and abundance of tree-associated insect herbivores, but its consequences for insect herbivory are poorly understood. A likely source of variability among studies is the insufficient consideration of intra-urban variability in forest cover. With the help of citizen scientists, we investigated the independent and interactive effects of local canopy cover and percentage of impervious surface on insect herbivory in the pedunculate oak (Quercus robur L.) throughout most of its geographic range in Europe. We found that the damage caused by chewing insect herbivores as well as the incidence of leaf-mining and gall-inducing herbivores consistently decreased with increasing impervious surface around focal oaks. Herbivory by chewing herbivores increased with increasing forest cover, regardless of impervious surface. In contrast, an increase in local canopy cover buffered the negative effect of impervious surface on leaf miners and strengthened its effect on gall inducers. These results show that-just like in non-urban areas-plant-herbivore interactions in cities are structured by a complex set of interacting factors. This highlights that local habitat characteristics within cities have the potential to attenuate or modify the effect of impervious surfaces on biotic interactions.Peer reviewe

    Herbivory on the pedunculate oak along an urbanization gradient in Europe : Effects of impervious surface, local tree cover, and insect feeding guild

    Get PDF
    Urbanization is an important driver of the diversity and abundance of tree-associated insect herbivores, but its consequences for insect herbivory are poorly understood. A likely source of variability among studies is the insufficient consideration of intraurban variability in forest cover. With the help of citizen scientists, we investigated the independent and interactive effects of local canopy cover and percentage of impervious surface on insect herbivory in the pedunculate oak (Quercus robur L.) throughout most of its geographic range in Europe. We found that the damage caused by chewing insect herbivores as well as the incidence of leaf-mining and gall-inducing herbivores consistently decreased with increasing impervious surface around focal oaks. Herbivory by chewing herbivores increased with increasing forest cover, regardless of impervious surface. In contrast, an increase in local canopy cover buffered the negative effect of impervious surface on leaf miners and strengthened its effect on gall inducers. These results show that – just like in non-urban areas – plant-herbivore interactions in cities are structured by a complex set of interacting factors. This highlights that local habitat characteristics within cities have the potential to attenuate or modify the effect of impervious surfaces on biotic interactions.Agence Nationale de la Recherche, Grant/Award Number: ANR-10--LABX-45; Fondation BNP Paribas.info:eu-repo/semantics/publishedVersio

    Herbivory on the pedunculate oak along an urbanization gradient in Europe: Effects of impervious surface, local tree cover, and insect feeding guild

    Get PDF
    Urbanization is an important driver of the diversity and abundance of tree-associated insect herbivores, but its consequences for insect herbivory are poorly understood. A likely source of variability among studies is the insufficient consideration of intra-urban variability in forest cover. With the help of citizen scientists, we investigated the independent and interactive effects of local canopy cover and percentage of impervious surface on insect herbivory in the pedunculate oak (Quercus robur L.) throughout most of its geographic range in Europe. We found that the damage caused by chewing insect herbivores as well as the incidence of leaf-mining and gall-inducing herbivores consistently decreased with increasing impervious surface around focal oaks. Herbivory by chewing herbivores increased with increasing forest cover, regardless of impervious surface. In contrast, an increase in local canopy cover buffered the negative effect of impervious surface on leaf miners and strengthened its effect on gall inducers. These results show that-just like in non-urban areas-plant-herbivore interactions in cities are structured by a complex set of interacting factors. This highlights that local habitat characteristics within cities have the potential to attenuate or modify the effect of impervious surfaces on biotic interactions

    Saproxylic beetles trace deadwood and differentiate between deadwood niches before their arrival on potential hosts

    No full text
    Deadwood provides a variety of habitats for saproxylic beetles. Whereas the understanding of the drivers promoting saproxylic beetle diversity has improved, the process of deadwood colonisation and beetle's potential to trace resources is poorly understood. However, the mechanisms facilitating deadwood detection by saproxylic beetles appears to be essential for survival, as deadwood is usually scattered in time and space. To investigate whether saproxylic beetles distinguish before their arrival on potential hosts between alive trees and deadwood (lying, stumps, standing), deadwood arrangement (aggregated, distributed) and different heights on standing resources (bottom = 0.5 m, middle = 4–5 m, top = 7.30–11.60 m), we sampled saproxylic beetles with sticky traps in a deadwood experiment. We found on average 67% higher abundance, 100% higher species numbers and 50–130% higher species diversity of colonising saproxylic beetles consistently for all deadwood types compared to alive trees with a distinct community composition on lying deadwood compared to the other resource types. Aggregated deadwood arrangement, which is associated with higher sun‐exposure, had a positive effect on species richness. The abundance, species number and diversity, was significantly higher for standing deadwood and alive trees at the bottom section of tree trunks. In contrast to living trees, however, the vertical position had an additional effect on the community composition on standing deadwood. Our results indicate that saproxylic beetles are attracted to potential deadwood habitats and actively select specific trunk sections before arriving on potential hosts. Furthermore, this study highlights the importance of sun‐exposed resources for species richness in saproxylic beetles

    A Biodiversity Boost From the Eurasian Beaver (Castor fiber) in Germany's Oldest National Park

    Get PDF
    Freshwater ecosystems are among the most threatened ecosystems on the planet. Beavers are important engineers in freshwater ecosystems and reintroduction programs have enabled the recovery of beaver populations in several European countries, but the impact on biodiversity conservation is still unclear. We studied the effects of beavers on the terrestrial biodiversity of eight taxonomic groups by comparing beaver ponds with river and forest habitats in a mountain forest ecosystem in Central Europe. Among the 1,166 collected species, 196 occurred exclusively at beaver ponds, 192 in plots at the river, and 156 in the forest plots. More species of conservation concern were found at the beaver ponds (76) than on the river (67) and forest (63) plots. Abundances of bats and birds were higher at the beaver ponds than at the river or forest sites. The number of bird species at the beaver ponds was higher than at the river. The community composition of birds, beetles, and true bugs differed significantly between the beaver ponds and river plots, and for seven taxonomic groups it differed significantly between the beaver ponds and forest plots. An indicator species analysis revealed eight indicator species for the beaver pond but none for the river and forest plots. Our results demonstrate that beavers, as ecological engineers, increase habitat heterogeneity in mountain forests and thereby promote biodiversity. The expansion of beaver populations into these ecosystems should thus be supported, as it may serve as a biotic restoration tool.ISSN:2296-701

    A biodiversity boost from the Eurasian beaver (Castor fiber) in Germany's oldest national park

    Get PDF
    Freshwater ecosystems are among the most threatened ecosystems on the planet. Beavers are important engineers in freshwater ecosystems and reintroduction programs have enabled the recovery of beaver populations in several European countries, but the impact on biodiversity conservation is still unclear. We studied the effects of beavers on the terrestrial biodiversity of eight taxonomic groups by comparing beaver ponds with river and forest habitats in a mountain forest ecosystem in Central Europe. Among the 1,166 collected species, 196 occurred exclusively at beaver ponds, 192 in plots at the river, and 156 in the forest plots. More species of conservation concern were found at the beaver ponds (76) than on the river (67) and forest (63) plots. Abundances of bats and birds were higher at the beaver ponds than at the river or forest sites. The number of bird species at the beaver ponds was higher than at the river. The community composition of birds, beetles, and true bugs differed significantly between the beaver ponds and river plots, and for seven taxonomic groups it differed significantly between the beaver ponds and forest plots. An indicator species analysis revealed eight indicator species for the beaver pond but none for the river and forest plots. Our results demonstrate that beavers, as ecological engineers, increase habitat heterogeneity in mountain forests and thereby promote biodiversity. The expansion of beaver populations into these ecosystems should thus be supported, as it may serve as a biotic restoration tool
    corecore