9 research outputs found

    Augmented reality-assisted roadmaps during periventricular brain surgery

    No full text
    Visualizing major periventricular anatomical landmarks intraoperatively during brain tumor removal is a decisive measure toward preserving such structures and thus the patient's postoperative quality of life. The aim of this study was to describe potential standardized preoperative planning using standard landmarks and procedures and to demonstrate the feasibility of using augmented reality (AR) to assist in performing surgery according to these "roadmaps." The authors have depicted stepwise AR surgical roadmaps applied to periventricular brain surgery with the aim of preserving major cognitive function. In addition to the technological aspects, this study highlights the importance of using emerging technologies as potential tools to integrate information and to identify and visualize landmarks to be used during tumor removal

    Mixed reality compared to the traditional ex cathedra format for neuroanatomy learning : the value of a three-dimensional virtual environment to better understand the real world

    No full text
    OBJECTIVE Neuroanatomy comprehension is a keystone of understanding intracranial surgeries. Traditionally taught to students during ex cathedra courses, neuroanatomy is described as complex. Mixed reality (MxR) opens new perspectives in the learning process. This study aims to compare MxR-based courses with traditional ex cathedra lectures for neuroanatomy education. METHODS Two lectures describing the neuroanatomy of the anterior circulation arteries ("Vascular Lecture" [VS]) and important white matter fiber tracts ("White Fibers Lecture" [WF]) were designed and delivered in ex cathedra and MxR-based formats with the same audio content. Ninety-one medical students were randomly assigned to group A (ex cathedra WF/MxR VS) or group B (MxR WF/ex cathedra VS). The MxR content was delivered via MxR goggles. Prior to each lecture, students took a 10-item multiple choice question (MCQ) pretest. After the lectures, students took a 20-item MCQ posttest (75% neuroanatomy, 25% clinical correlation). RESULTS The pretest scores showed no statistical difference between groups. Median posttest scores increased by 14.3% after using the MxR-based format compared to the ex cathedra format (16.00 [13.0, 18.0] vs 14.0 [11.0, 17.0], respectively, p &lt; 0.01). Regarding the VS, students scored 21.7% better using the MxR format compared to the ex cathedra format (14.0 [12.0, 16.0] vs 11.5 [10.0, 14.0], p &lt; 0.001). Concerning the WF, the median score using MxR was 18.0 (17.0, 19.0), and the median score using the ex cathedra format was 17.0 (16.0, 18.0; p &lt; 0.01). Students showed high motivation to learn neuroanatomy in the future using MxR (74%) rather than ex cathedra format (25%; p &lt; 0.001). Mild discomfort using the MxR goggles was reported by 48.3% of participants. Most participants (95.5%) preferred the MxR-based teaching. CONCLUSIONS Students acquired a better knowledge of the anatomy of the anterior circulation arteries and white fiber tracts using MxR-based teaching as compared to the standard ex cathedra format. The perception of lecture quality and learning motivation was better using MxR-based teaching despite some mild discomfort. The development of MxR-based solutions is promising to improve neuroanatomy education.</p

    Effect of Aneurysm and Patient Characteristics on Intracranial Aneurysm Wall Thickness

    No full text
    Background: The circle of Willis is a network of arteries allowing blood supply to the brain. Bulging of these arteries leads to formation of intracranial aneurysm (IA). Subarachnoid hemorrhage (SAH) due to IA rupture is among the leading causes of disability in the western world. The formation and rupture of IAs is a complex pathological process not completely understood. In the present study, we have precisely measured aneurysmal wall thickness and its uniformity on histological sections and investigated for associations between IA wall thickness/uniformity and commonly admitted risk factors for IA rupture. Methods: Fifty-five aneurysm domes were obtained at the Geneva University Hospitals during microsurgery after clipping of the IA neck. Samples were embedded in paraffin, sectioned and stained with hematoxylin-eosin to measure IA wall thickness. The mean, minimum, and maximum wall thickness as well as thickness uniformity was measured for each IA. Clinical data related to IA characteristics (ruptured or unruptured, vascular location, maximum dome diameter, neck size, bottleneck factor, aspect and morphology), and patient characteristics [age, smoking, hypertension, sex, ethnicity, previous SAH, positive family history for IA/SAH, presence of multiple IAs and diagnosis of polycystic kidney disease (PKD)] were collected. Results: We found positive correlations between maximum dome diameter or neck size and IA wall thickness and thickness uniformity. PKD patients had thinner IA walls. No associations were found between smoking, hypertension, sex, IA multiplicity, rupture status or vascular location, and IA wall thickness. No correlation was found between patient age and IA wall thickness. The group of IAs with non-uniform wall thickness contained more ruptured IAs, women and patients harboring multiple IAs. Finally, PHASES and ELAPSS scores were positively correlated with higher IA wall heterogeneity. Conclusion: Among our patient and aneurysm characteristics of interest, maximum dome diameter, neck size and PKD were the three factors having the most significant impact on IA wall thickness and thickness uniformity. Moreover, wall thickness heterogeneity was more observed in ruptured IAs, in women and in patients with multiple IAs. Advanced medical imaging allowing in vivo measurement of IA wall thickness would certainly improve personalized management of the disease and patient care

    Chemical and Biological Gradients along the Damma Glacier Soil Chronosequence, Switzerland

    No full text
    Soils are the product of a complex suite of chemical, biological, and physical processes. In spite of the importance of soils for society and for sustaining life on earth, our knowledge of soil formation rates and of the influence of biological activity on mineral weathering and geochemical cycles is still limited. In this paper we provide a description of the Damma Glacier Critical Zone Observatory and present a first synthesis of our multi disciplinary studies of the 150-yr soil chronosequence. The aim of our research was to improve our understanding of ecosystem development on a barren substrate and the early evolution of soils and to evaluate the influence of biological activity on weathering rates. Soil pH, cation exchange capacity, biomass, bacterial and fungal populations, and soil organic matt er show clear gradients related to soil age, in spite of the extreme heterogeneity of the ecosystem. The bulk mineralogy and inorganic geochemistry of the soils, in contrast, are independent of soil age and only in older soils (>100 yr) is incipient weathering observed, mainly as a decreasing content in albite and biotite by coincidental formation of secondary chlorites in the clay fraction. Further, we document the rapid evolution of microbial and plant communities along the chronosequence
    corecore