71 research outputs found

    Smoking among morbidly obese patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Smokers usually have a lower Body Mass Index (BMI) when compared to non-smokers. Such a relationship, however, has not been fully studied in obese and morbidly obese patients. The objective of this study was to evaluate the relationship between smoking and BMI among obese and morbidly obese subjects.</p> <p>Methods</p> <p>In a case-control study design, 1022 individuals of both genders, 18-65 years of age, were recruited and grouped according to their smoking status (smokers, ex-smokers, and non-smokers) and nutritional state according to BMI (normal weight, overweight, obese, and morbidly obese).</p> <p>Results</p> <p>No significant differences were detected in the four BMI groups with respect to smoking status. However, there was a trend towards a higher frequency of smokers among the overweight, obese, and morbidly obese subjects compared to normal weight individuals (p = 0.078). In a logistic regression, after adjusting for potential confounders, morbidly obese subjects had an adjusted OR of 2.25 (95% CI, 1.52-3.34; p < 0.001) to be a smoker when compared to normal weight individuals.</p> <p>Discussion</p> <p>In this sample, while the frequency of smokers diminished in normal weight subjects as the BMI increased, such a trend was reversed in overweight, obese, and morbidly obese patients. In the latter group, the prevalence of smokers was significantly higher compared to the other groups. A patient with morbid obesity had a 2-fold increased risk of becoming a smoker. We speculate that these finding could be a consequence of various overlapping risk behaviors because these patients also are generally less physically active and prefer a less healthy diet, in addition to having a greater alcohol intake in relation to their counterparts. The external validity of these findings must be confirmed.</p

    Comparison of geometric morphometric outline methods in the discrimination of age-related differences in feather shape

    Get PDF
    BACKGROUND: Geometric morphometric methods of capturing information about curves or outlines of organismal structures may be used in conjunction with canonical variates analysis (CVA) to assign specimens to groups or populations based on their shapes. This methodological paper examines approaches to optimizing the classification of specimens based on their outlines. This study examines the performance of four approaches to the mathematical representation of outlines and two different approaches to curve measurement as applied to a collection of feather outlines. A new approach to the dimension reduction necessary to carry out a CVA on this type of outline data with modest sample sizes is also presented, and its performance is compared to two other approaches to dimension reduction. RESULTS: Two semi-landmark-based methods, bending energy alignment and perpendicular projection, are shown to produce roughly equal rates of classification, as do elliptical Fourier methods and the extended eigenshape method of outline measurement. Rates of classification were not highly dependent on the number of points used to represent a curve or the manner in which those points were acquired. The new approach to dimensionality reduction, which utilizes a variable number of principal component (PC) axes, produced higher cross-validation assignment rates than either the standard approach of using a fixed number of PC axes or a partial least squares method. CONCLUSION: Classification of specimens based on feather shape was not highly dependent of the details of the method used to capture shape information. The choice of dimensionality reduction approach was more of a factor, and the cross validation rate of assignment may be optimized using the variable number of PC axes method presented herein

    The Rotterdam Study: 2012 objectives and design update

    Get PDF
    The Rotterdam Study is a prospective cohort study ongoing since 1990 in the city of Rotterdam in The Netherlands. The study targets cardiovascular, endocrine, hepatic, neurological, ophthalmic, psychiatric, dermatological, oncological, and respiratory diseases. As of 2008, 14,926 subjects aged 45 years or over comprise the Rotterdam Study cohort. The findings of the Rotterdam Study have been presented in over a 1,000 research articles and reports (see www.erasmus-epidemiology.nl/rotterdamstudy). This article gives the rationale of the study and its design. It also presents a summary of the major findings and an update of the objectives and methods

    Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure.

    Get PDF
    Numerous genetic loci have been associated with systolic blood pressure (SBP) and diastolic blood pressure (DBP) in Europeans. We now report genome-wide association studies of pulse pressure (PP) and mean arterial pressure (MAP). In discovery (N = 74,064) and follow-up studies (N = 48,607), we identified at genome-wide significance (P = 2.7 × 10(-8) to P = 2.3 × 10(-13)) four new PP loci (at 4q12 near CHIC2, 7q22.3 near PIK3CG, 8q24.12 in NOV and 11q24.3 near ADAMTS8), two new MAP loci (3p21.31 in MAP4 and 10q25.3 near ADRB1) and one locus associated with both of these traits (2q24.3 near FIGN) that has also recently been associated with SBP in east Asians. For three of the new PP loci, the estimated effect for SBP was opposite of that for DBP, in contrast to the majority of common SBP- and DBP-associated variants, which show concordant effects on both traits. These findings suggest new genetic pathways underlying blood pressure variation, some of which may differentially influence SBP and DBP

    Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk.

    Get PDF
    Blood pressure is a heritable trait influenced by several biological pathways and responsive to environmental stimuli. Over one billion people worldwide have hypertension (≥140 mm Hg systolic blood pressure or  ≥90 mm Hg diastolic blood pressure). Even small increments in blood pressure are associated with an increased risk of cardiovascular events. This genome-wide association study of systolic and diastolic blood pressure, which used a multi-stage design in 200,000 individuals of European descent, identified sixteen novel loci: six of these loci contain genes previously known or suspected to regulate blood pressure (GUCY1A3-GUCY1B3, NPR3-C5orf23, ADM, FURIN-FES, GOSR2, GNAS-EDN3); the other ten provide new clues to blood pressure physiology. A genetic risk score based on 29 genome-wide significant variants was associated with hypertension, left ventricular wall thickness, stroke and coronary artery disease, but not kidney disease or kidney function. We also observed associations with blood pressure in East Asian, South Asian and African ancestry individuals. Our findings provide new insights into the genetics and biology of blood pressure, and suggest potential novel therapeutic pathways for cardiovascular disease prevention
    corecore