94 research outputs found

    Both Size and GC-Content of Minimal Introns Are Selected in Human Populations

    Get PDF
    Background: We previously have studied the insertion and deletion polymorphism by sequencing no more than one hundred introns in a mixed human population and found that the minimal introns tended to maintain length at an optimal size. Here we analyzed re-sequenced 179 individual genomes (from African, European, and Asian populations) from the data released by the 1000 Genome Project to study the size dynamics of minimal introns. Principal Findings: We not only confirmed that minimal introns in human populations are selected but also found two major effects in minimal intron evolution: (i) Size-effect: minimal introns longer than an optimal size (87 nt) tend to have a higher ratio of deletion to insertion than those that are shorter than the optimal size; (ii) GC-effect: minimal introns with lower GC content tend to be more frequently deleted than those with higher GC content. The GC-effect results in a higher GC content in minimal introns than their flanking exons as opposed to larger introns ($125 nt) that always have a lower GC content than that of their flanking exons. We also observed that the two effects are distinguishable but not completely separable within and between populations. Conclusions: We validated the unique mutation dynamics of minimal introns in keeping their near-optimal size and GC content, and our observations suggest potentially important functions of human minimal introns in transcript processin

    Short-Course, High-Dose Rifampicin Achieves Wolbachia Depletion Predictive of Curative Outcomes in Preclinical Models of Lymphatic Filariasis and Onchocerciasis

    Get PDF
    Lymphatic filariasis (LF) and onchocerciasis are priority neglected tropical diseases targeted for elimination. The only safe drug treatment with substantial curative activity against the filarial nematodes responsible for LF (Brugia malayi, Wuchereria bancrofti) or onchocerciasis (Onchocerca volvulus) is doxycycline. The target of doxycycline is the essential endosymbiont, Wolbachia. Four to six weeks doxycycline therapy achieves >90% depletion of Wolbachia in worm tissues leading to blockade of embryogenesis, adult sterility and premature death 18–24 months post-treatment. Long treatment length and contraindications in children and pregnancy are obstacles to implementing doxycycline as a public health strategy. Here we determine, via preclinical infection models of Brugia malayi or Onchocerca ochengi that elevated exposures of orally-administered rifampicin can lead to Wolbachia depletions from filariae more rapidly than those achieved by doxycycline. Dose escalation of rifampicin achieves >90% Wolbachia depletion in time periods of 7 days in B. malayi and 14 days in O. ochengi. Using pharmacokinetic-pharmacodynamic modelling and mouse-human bridging analysis, we conclude that clinically relevant dose elevations of rifampicin, which have recently been determined as safe in humans, could be administered as short courses to filariasis target populations with potential to reduce anti-Wolbachia curative therapy times to between one and two weeks

    Height and timing of growth spurt during puberty in young people living with vertically acquired HIV in Europe and Thailand.

    Get PDF
    OBJECTIVE: The aim of this study was to describe growth during puberty in young people with vertically acquired HIV. DESIGN: Pooled data from 12 paediatric HIV cohorts in Europe and Thailand. METHODS: One thousand and ninety-four children initiating a nonnucleoside reverse transcriptase inhibitor or boosted protease inhibitor based regimen aged 1-10 years were included. Super Imposition by Translation And Rotation (SITAR) models described growth from age 8 years using three parameters (average height, timing and shape of the growth spurt), dependent on age and height-for-age z-score (HAZ) (WHO references) at antiretroviral therapy (ART) initiation. Multivariate regression explored characteristics associated with these three parameters. RESULTS: At ART initiation, median age and HAZ was 6.4 [interquartile range (IQR): 2.8, 9.0] years and -1.2 (IQR: -2.3 to -0.2), respectively. Median follow-up was 9.1 (IQR: 6.9, 11.4) years. In girls, older age and lower HAZ at ART initiation were independently associated with a growth spurt which occurred 0.41 (95% confidence interval 0.20-0.62) years later in children starting ART age 6 to 10 years compared with 1 to 2 years and 1.50 (1.21-1.78) years later in those starting with HAZ less than -3 compared with HAZ at least -1. Later growth spurts in girls resulted in continued height growth into later adolescence. In boys starting ART with HAZ less than -1, growth spurts were later in children starting ART in the oldest age group, but for HAZ at least -1, there was no association with age. Girls and boys who initiated ART with HAZ at least -1 maintained a similar height to the WHO reference mean. CONCLUSION: Stunting at ART initiation was associated with later growth spurts in girls. Children with HAZ at least -1 at ART initiation grew in height at the level expected in HIV negative children of a comparable age

    Phenotypic and genotypic diversity of wine yeasts used for acidic musts

    Get PDF
    The aim of this study was to examine the physiological and genetic stability of the industrial wine yeasts Saccharomyces cerevisiae and Saccharomyces bayanus var. uvarum under acidic stress during fermentation. The yeasts were sub-cultured in aerobic or fermentative conditions in media with or without l-malic acid. Changes in the biochemical profiles, karyotypes, and mitochondrial DNA profiles were assessed after minimum 50 generations. All yeast segregates showed a tendency to increase the range of compounds used as sole carbon sources. The wild strains and their segregates were aneuploidal or diploidal. One of the four strains of S. cerevisiae did not reveal any changes in the electrophoretic profiles of chromosomal and mitochondrial DNA, irrespective of culture conditions. The extent of genomic changes in the other yeasts was strain-dependent. In the karyotypes of the segregates, the loss of up to 2 and the appearance up to 3 bands was noted. The changes in their mtDNA patterns were much broader, reaching 5 missing and 10 additional bands. The only exception was S. bayanus var. uvarum Y.00779, characterized by significantly greater genome plasticity only under fermentative stress. Changes in karyotypes and mtDNA profiles prove that fermentative stress is the main driving force of the adaptive evolution of the yeasts. l-malic acid does not influence the extent of genomic changes and the resistance of wine yeasts exhibiting increased demalication activity to acidic stress is rather related to their ability to decompose this acid. The phenotypic changes in segregates, which were found even in yeasts that did not reveal deviations in their DNA profiles, show that phenotypic characterization may be misleading in wine yeast identification. Because of yeast gross genomic diversity, karyotyping even though it does not seem to be a good discriminative tool, can be useful in determining the stability of wine yeasts. Restriction analysis of mitochondrial DNA appears to be a more sensitive method allowing for an early detection of genotypic changes in yeasts. Thus, if both of these methods are applied, it is possible to conduct the quick routine assessment of wine yeast stability in pure culture collections depositing industrial strains

    Planetary Rings

    Full text link
    Planetary rings are the only nearby astrophysical disks, and the only disks that have been investigated by spacecraft. Although there are significant differences between rings and other disks, chiefly the large planet/ring mass ratio that greatly enhances the flatness of rings (aspect ratios as small as 1e-7), understanding of disks in general can be enhanced by understanding the dynamical processes observed at close-range and in real-time in planetary rings. We review the known ring systems of the four giant planets, as well as the prospects for ring systems yet to be discovered. We then review planetary rings by type. The main rings of Saturn comprise our system's only dense broad disk and host many phenomena of general application to disks including spiral waves, gap formation, self-gravity wakes, viscous overstability and normal modes, impact clouds, and orbital evolution of embedded moons. Dense narrow rings are the primary natural laboratory for understanding shepherding and self-stability. Narrow dusty rings, likely generated by embedded source bodies, are surprisingly found to sport azimuthally-confined arcs. Finally, every known ring system includes a substantial component of diffuse dusty rings. Planetary rings have shown themselves to be useful as detectors of planetary processes around them, including the planetary magnetic field and interplanetary impactors as well as the gravity of nearby perturbing moons. Experimental rings science has made great progress in recent decades, especially numerical simulations of self-gravity wakes and other processes but also laboratory investigations of coefficient of restitution and spectroscopic ground truth. The age of self-sustained ring systems is a matter of debate; formation scenarios are most plausible in the context of the early solar system, while signs of youthfulness indicate at least that rings have never been static phenomena.Comment: 82 pages, 34 figures. Final revision of general review to be published in "Planets, Stars and Stellar Systems", P. Kalas and L. French (eds.), Springer (http://refworks.springer.com/sss

    Gender differences in the use of cardiovascular interventions in HIV-positive persons; the D:A:D Study

    Get PDF
    Peer reviewe

    Association of follow-up infarct volume with functional outcome in acute ischemic stroke: a pooled analysis of seven randomized trials.

    Get PDF
    BACKGROUND: Follow-up infarct volume (FIV) has been recommended as an early indicator of treatment efficacy in patients with acute ischemic stroke. Questions remain about the optimal imaging approach for FIV measurement. OBJECTIVE: To examine the association of FIV with 90-day modified Rankin Scale (mRS) score and investigate its dependency on acquisition time and modality. METHODS: Data of seven trials were pooled. FIV was assessed on follow-up (12 hours to 2 weeks) CT or MRI. Infarct location was defined as laterality and involvement of the Alberta Stroke Program Early CT Score regions. Relative quality and strength of multivariable regression models of the association between FIV and functional outcome were assessed. Dependency of imaging modality and acquisition time (≀48 hours vs >48 hours) was evaluated. RESULTS: Of 1665 included patients, 83% were imaged with CT. Median FIV was 41 mL (IQR 14-120). A large FIV was associated with worse functional outcome (OR=0.88(95% CI 0.87 to 0.89) per 10 mL) in adjusted analysis. A model including FIV, location, and hemorrhage type best predicted mRS score. FIV of ≄133 mL was highly specific for unfavorable outcome. FIV was equally strongly associated with mRS score for assessment on CT and MRI, even though large differences in volume were present (48 mL (IQR 15-131) vs 22 mL (IQR 8-71), respectively). Associations of both early and late FIV assessments with outcome were similar in strength (ρ=0.60(95% CI 0.56 to 0.64) and ρ=0.55(95% CI 0.50 to 0.60), respectively). CONCLUSIONS: In patients with an acute ischemic stroke due to a proximal intracranial occlusion of the anterior circulation, FIV is a strong independent predictor of functional outcome and can be assessed before 48 hours, oneither CT or MRI

    Measuring 129Xe transfer across the blood‐brain barrier using MR spectroscopy

    Get PDF
    Purpose This study develops a tracer kinetic model of xenon uptake in the human brain to determine the transfer rate of inhaled hyperpolarized 129Xe from cerebral blood to gray matter that accounts for the effects of cerebral physiology, perfusion and magnetization dynamics. The 129Xe transfer rate is expressed using a tracer transfer coefficient, which estimates the quantity of hyperpolarized 129Xe dissolved in cerebral blood under exchange with depolarized 129Xe dissolved in gray matter under equilibrium of concentration. Theory and Methods Time‐resolved MR spectra of hyperpolarized 129Xe dissolved in the human brain were acquired from three healthy volunteers. Acquired spectra were numerically fitted with five Lorentzian peaks in accordance with known 129Xe brain spectral peaks. The signal dynamics of spectral peaks for gray matter and red blood cells were quantified, and correction for the 129Xe T1 dependence upon blood oxygenation was applied. 129Xe transfer dynamics determined from the ratio of the peaks for gray matter and red blood cells was numerically fitted with the developed tracer kinetic model. Results For all the acquired NMR spectra, the developed tracer kinetic model fitted the data with tracer transfer coefficients between 0.1 and 0.14. Conclusion In this study, a tracer kinetic model was developed and validated that estimates the transfer rate of HP 129Xe from cerebral blood to gray matter in the human brain
    • 

    corecore