79 research outputs found

    Mutation Bias Favors Protein Folding Stability in the Evolution of Small Populations

    Get PDF
    Mutation bias in prokaryotes varies from extreme adenine and thymine (AT) in obligatory endosymbiotic or parasitic bacteria to extreme guanine and cytosine (GC), for instance in actinobacteria. GC mutation bias deeply influences the folding stability of proteins, making proteins on the average less hydrophobic and therefore less stable with respect to unfolding but also less susceptible to misfolding and aggregation. We study a model where proteins evolve subject to selection for folding stability under given mutation bias, population size, and neutrality. We find a non-neutral regime where, for any given population size, there is an optimal mutation bias that maximizes fitness. Interestingly, this optimal GC usage is small for small populations, large for intermediate populations and around 50% for large populations. This result is robust with respect to the definition of the fitness function and to the protein structures studied. Our model suggests that small populations evolving with small GC usage eventually accumulate a significant selective advantage over populations evolving without this bias. This provides a possible explanation to the observation that most species adopting obligatory intracellular lifestyles with a consequent reduction of effective population size shifted their mutation spectrum towards AT. The model also predicts that large GC usage is optimal for intermediate population size. To test these predictions we estimated the effective population sizes of bacterial species using the optimal codon usage coefficients computed by dos Reis et al. and the synonymous to non-synonymous substitution ratio computed by Daubin and Moran. We found that the population sizes estimated in these ways are significantly smaller for species with small and large GC usage compared to species with no bias, which supports our prediction

    Observation of long-range, near-side angular correlations in proton-proton collisions at the LHC

    Get PDF
    This is the pre-print version of the Published Article, which can be accessed from the link below - Copyright @ 2010 Springer VerlagResults on two-particle angular correlations for charged particles emitted in proton-proton collisions at center-of-mass energies of 0.9, 2.36, and 7 TeV are presented, using data collected with the CMS detector over a broad range of pseudorapidity (eta) and azimuthal angle (phi). Short-range correlations in Delta(eta), which are studied in minimum bias events, are characterized using a simple "independent cluster" parametrization in order to quantify their strength (cluster size) and their extent in eta (cluster decay width). Long-range azimuthal correlations are studied differentially as a function of charged particle multiplicity and particle transverse momentum using a 980 inverse nb data set at 7 TeV. In high multiplicity events, a pronounced structure emerges in the two-dimensional correlation function for particle pairs with intermediate transverse momentum of 1-3 GeV/c, 2.0< |Delta(eta)| <4.8 and Delta(phi) near 0. This is the first observation of such a long-range, near-side feature in two-particle correlation functions in pp or p p-bar collisions

    Observation of long-range, near-side angular correlations in proton-proton collisions at the LHC

    Get PDF
    Results on two-particle angular correlations for charged particles emitted in proton-proton collisions at center-of-mass energies of 0.9, 2.36, and 7TeV are presented, using data collected with the CMS detector over a broad range of pseudorapidity (eta) and azimuthal angle (phi). Short-range correlations in Delta(eta), which are studied in minimum bias events, are characterized using a simple "independent cluster" parametrization in order to quantify their strength (cluster size) and their extent in eta (cluster decay width). Long-range azimuthal correlations are studied differentially as a function of charged particle multiplicity and particle transverse momentum using a 980 nb(-1) data set at 7TeV. In high multiplicity events, a pronounced structure emerges in the two-dimensional correlation function for particle pairs with intermediate p(T) of 1-3 GeV/c, 2.

    PREFERENCE FOR DECISION STRUCTURES IN A SOCIAL DILEMMA SITUATION

    No full text

    PROCESSING SEQUENTIAL STATUS INFORMATION

    No full text
    • …
    corecore