130 research outputs found
Search for TeV Scale Physics in Heavy Flavour Decays
The subject of heavy flavour decays as probes for physics beyond the TeV
scale is covered from the experimental perspective. Emphasis is placed on the
more traditional Beyond the Standard Model topics that have potential for
impact in the short term, with the physics explained. We do unabashedly promote
our own phemonenology work.Comment: 10 pages, 9 figures (now fixed); Submitted for the SUSY07 proceeding
Evading the CKM Hierarchy: Intrinsic Charm in B Decays
We show that the presence of intrinsic charm in the hadrons' light-cone wave
functions, even at a few percent level, provides new, competitive decay
mechanisms for B decays which are nominally CKM-suppressed. For example, the
weak decays of the B-meson to two-body exclusive states consisting of strange
plus light hadrons, such as B\to\pi K, are expected to be dominated by penguin
contributions since the tree-level b\to s u\bar u decay is CKM suppressed.
However, higher Fock states in the B wave function containing charm quark pairs
can mediate the decay via a CKM-favored b\to s c\bar c tree-level transition.
Such intrinsic charm contributions can be phenomenologically significant. Since
they mimic the amplitude structure of ``charming'' penguin contributions,
charming penguins need not be penguins at all.Comment: 28 pages, 6 figures, published version. References added, minor
change
Recommended from our members
Balancing the popularity bias of object similarities for personalised recommendation
Network-based similarity measures have found wide applications in recommendation algorithms and made signicant contributions for uncovering users' potential interests. However, existing measures are generally biased in terms of popularity, that the popular objects tend to have more common neighbours with others and thus are considered more similar to others. Such popularity bias
of similarity quantification will result in the biased recommendations, with either poor accuracy or poor diversity. Based on the bipartite network modelling of the user-object interactions, this paper firstly calculates the expected number of common neighbours of two objects with given popularities in random networks. A Balanced Common Neighbour similarity index is accordingly developed
by removing the random-driven common neighbours, estimated as the expected number, from the total number. Recommendation experiments in three data sets show that balancing the popularity bias in a certain degree can significantly improve the recommendations' accuracy and diversity
simultaneously
Muon anomalous magnetic moment in the standard model with two Higgs doublets
The muon anomalous magnetic moment is investigated in the standard model with
two Higgs doublets (S2HDM) motivated from spontaneous CP violation. Thus all
the effective Yukawa couplings become complex. As a consequence of the non-zero
phase in the couplings, the one loop contribution from the neutral scalar
bosons could be positive and negative relying on the CP phases. The
interference between one and two loop diagrams can be constructive in a large
parameter space of CP-phases. This will result in a significant contribution to
muon anomalous magnetic moment even in the flavor conserving process with a
heavy neutral scalar boson ( 200 GeV) once the effective muon Yukawa
coupling is large (). In general, the one loop contributions
from lepton flavor changing scalar interactions become more important. In
particular, when all contributions are positive in a reasonable parameter space
of CP phases, the recently reported 2.6 sigma experiment vs. theory deviation
can be easily explained even for a heavy scalar boson with a relative small
Yukawa coupling in the S2HDM.Comment: 8 pages, RevTex file, 5 figures, published version Phys. Rev. D 54
(2001) 11501
Fine-Mapping of the 1p11.2 Breast Cancer Susceptibility Locus
The Cancer Genetic Markers of Susceptibility genome-wide association study (GWAS) originally identified a single nucleotide polymorphism (SNP) rs11249433 at 1p11.2 associated with breast cancer risk. To fine-map this locus, we genotyped 92 SNPs in a 900kb region (120,505,799-121,481,132) flanking rs11249433 in 45,276 breast cancer cases and 48,998 controls of European, Asian and African ancestry from 50 studies in the Breast Cancer Association Consortium. Genotyping was done using iCOGS, a custom-built array. Due to the complicated nature of the region on chr1p11.2: 120,300,000-120,505,798, that lies near the centromere and contains seven duplicated genomic segments, we restricted analyses to 429 SNPs excluding the duplicated regions (42 genotyped and 387 imputed). Perallelic associations with breast cancer risk were estimated using logistic regression models adjusting for study and ancestry-specific principal components. The strongest association observed was with the original identified index SNP rs11249433 (minor allele frequency (MAF) 0.402; per-allele odds ratio (OR) = 1.10, 95% confidence interval (CI) 1.08-1.13, P = 1.49 x 10(-21)). The association for rs11249433 was limited to ER-positive breast cancers (test for heterogeneity PPeer reviewe
Measurement of forward charged hadron flow harmonics in peripheral PbPb collisions at √sNN = 5.02 TeV with the LHCb detector
Flow harmonic coefficients,
v
n
, which are the key to studying the hydrodynamics of the quark-gluon plasma (QGP) created in heavy-ion collisions, have been measured in various collision systems and kinematic regions and using various particle species. The study of flow harmonics in a wide pseudorapidity range is particularly valuable to understand the temperature dependence of the shear viscosity to entropy density ratio of the QGP. This paper presents the first LHCb results of the second- and the third-order flow harmonic coefficients of charged hadrons as a function of transverse momentum in the forward region, corresponding to pseudorapidities between 2.0 and 4.9, using the data collected from PbPb collisions in 2018 at a center-of-mass energy of 5.02
TeV
. The coefficients measured using the two-particle angular correlation analysis method are smaller than the central-pseudorapidity measurements at ALICE and ATLAS from the same collision system but share similar features
Helium identification with LHCb
The identification of helium nuclei at LHCb is achieved using a method based on measurements of ionisation losses in the silicon sensors and timing measurements in the Outer Tracker drift tubes. The background from photon conversions is reduced using the RICH detectors and an isolation requirement. The method is developed using pp collision data at √(s) = 13 TeV recorded by the LHCb experiment in the years 2016 to 2018, corresponding to an integrated luminosity of 5.5 fb-1. A total of around 105 helium and antihelium candidates are identified with negligible background contamination. The helium identification efficiency is estimated to be approximately 50% with a corresponding background rejection rate of up to O(10^12). These results demonstrate the feasibility of a rich programme of measurements of QCD and astrophysics interest involving light nuclei
Curvature-bias corrections using a pseudomass method
Momentum measurements for very high momentum charged particles, such as muons from electroweak vector boson decays, are particularly susceptible to charge-dependent curvature biases that arise from misalignments of tracking detectors. Low momentum charged particles used in alignment procedures have limited sensitivity to coherent displacements of such detectors, and therefore are unable to fully constrain these misalignments to the precision necessary for studies of electroweak physics. Additional approaches are therefore required to understand and correct for these effects. In this paper the curvature biases present at the LHCb detector are studied using the pseudomass method in proton-proton collision data recorded at centre of mass energy √(s)=13 TeV during 2016, 2017 and 2018. The biases are determined using Z→μ + μ - decays in intervals defined by the data-taking period, magnet polarity and muon direction. Correcting for these biases, which are typically at the 10-4 GeV-1 level, improves the Z→μ + μ - mass resolution by roughly 18% and eliminates several pathological trends in the kinematic-dependence of the mean dimuon invariant mass
Study of CP violation in B0 → DK⋆(892)0 decays with D → Kπ(ππ), ππ(ππ), and KK final states
A measurement of CP-violating observables associated with the interference
of B0 → D0K⋆
(892)0 and B0 → D¯ 0K⋆
(892)0 decay amplitudes is performed in the
D0 → K∓π
±(π
+π
−), D0 → π
+π
−(π
+π
−), and D0 → K+K− fnal states using data collected
by the LHCb experiment corresponding to an integrated luminosity of 9 fb−1
. CP-violating
observables related to the interference of B0
s → D0K¯ ⋆
(892)0 and B0
s → D¯ 0K¯ ⋆
(892)0 are also
measured, but no evidence for interference is found. The B0 observables are used to constrain
the parameter space of the CKM angle γ and the hadronic parameters r
DK⋆
B0 and δ
DK⋆
B0 with
inputs from other measurements. In a combined analysis, these measurements allow for four
solutions in the parameter space, only one of which is consistent with the world average
- …