52 research outputs found

    Freshwater conservation assessments in (semi-)arid regions: testing river intermittence and buffer strategies using freshwater mussels (Bivalvia, Unionida) in Morocco

    Get PDF
    The IUCN Red List assessments are essentially based on population trends and range, namely Area of Occupancy (AOO) and Extent of Occupancy (EOO). Range estimations are based on fixed grids, but this is likely inappropriate for species living in river networks. Furthermore, AOO and EOO are measured using the whole hydrographic network, therefore disregarding temporary sections, which is particularly problematic in arid and semi-arid regions. Here we mapped the permanent hydrographic network of Morocco using satellite imagery, complemented with field surveys to collect samples for molecular analyses of the five freshwater mussel species present and assess their distribution. The phylogeographic patterns are described for each species and used to identify priority areas and evolutionary significant units for conservation. Permanent hydrographic river sections represent only 18.3% of the whole hydrographic network. A north-to-south gradient of genetic diversity, species richness and distribution range was found, being coherent with water availability and river intermittence. Isolated evolutionary units were detected in southern basins that should also receive particular attention in conservation planning. We propose the mean river width multiplied by the extent of the river network as the best and the most adequate way to estimate both EOO and AOO. Given the worldwide degradation of freshwater systems and biodiversity, an accurate (re)assessment of species conservation status supported with maps of intermittent water bodies will be essential for prioritizing and guiding conservation actions and management plans, especially in arid and semi-arid regions.This work was partially supported by the Portuguese Foundation for Science and Technology (FCT) under grant SFRH/BD/115728/2016 (MLL) and grant SFRH/BD/137935/2018 (AGS). This research was developed under ConBiomics: the missing approach for the Conservation of freshwater Bivalves Project N° NORTE-01-0145-FEDER-030286, co-financed by COMPETE 2020, Portugal 2020 and the European Union through the ERDF, and by FCT through national funds. This study was additionally conducted within the scope of project “Biodiversity and conservation of the critically endangered freshwater mussels in Morocco: ecogeographic, genetic and physiological information”, funded by Mohamed bin Zayed Species Conservation Fund (Reference 15256799) and project “Breeding the most endangered bivalve on Earth: Margaritifera marocana”, funded by IUCN SOS save our species fund (Reference 2015B-015). Official capture and sampling licenses were issued by the Université Cadi Ayyad (Faculté des Sciences, Semlalia, Marrakech, Maroc)

    Deglaciation records of 17O-excess in East Antarctica: reliable reconstruction of oceanic normalized relative humidity from coastal sites

    Get PDF
    We measured 17O and 18O in two Antarctic ice cores at EPICA Dome C (EDC) and TALDICE (TD), respectively, and computed 17O-excess with respect to VSMOW. The comparison of our 17O-excess data with the previous record obtained at Vostok (Landais et al., 2008a) revealed differences up to 35 ppm in 17O-excess mean level and evolution for the three sites. Our data show that the large increase depicted at Vostok (20 ppm) during the last deglaciation is a regional and not a general pattern in the temporal distribution of 17O-excess in East Antarctica. The EDC data display an increase of 12 ppm, whereas the TD data show no significant variation from the Last Glacial Maximum (LGM) to the Early Holocene (EH). A Lagrangian moisture source diagnostic revealed very different source regions for Vostok and EDC compared to TD. These findings combined with the results of a sensitivity analysis, using a Rayleigh-type isotopic model, suggest that normalized relative humidity (RHn) at the oceanic source region (OSR) is a determining factor for the spatial differences of 17O-excess in East Antarctica. However, 17O-excess in remote sites of continental Antarctica (e.g. Vostok) may be highly sensitive to local effects. Hence, we consider 17O-excess in coastal East Antarctic ice cores (TD) to be more reliable as a proxy for RHn at the OSR

    Functional Interaction between CFTR and the Sodium-Phosphate Co-Transport Type 2a in Xenopus laevis Oocytes

    Get PDF
    A growing number of proteins, including ion transporters, have been shown to interact with Cystic Fibrosis Transmembrane conductance Regulator (CFTR). CFTR is an epithelial chloride channel that is involved in Cystic Fibrosis (CF) when mutated; thus a better knowledge of its functional interactome may help to understand the pathophysiology of this complex disease. In the present study, we investigated if CFTR and the sodium-phosphate co-transporter type 2a (NPT2a) functionally interact after heterologous expression of both proteins in Xenopus laevis oocytes.NPT2a was expressed alone or in combination with CFTR in X. laevis oocytes. Using the two-electrode voltage-clamp technique, the inorganic phosphate-induced current (IPi) was measured and taken as an index of NPT2a activity. The maximal IPi for NPT2a substrates was reduced when CFTR was co-expressed with NPT2a, suggesting a decrease in its expression at the oolemna. This was consistent with Western blot analysis showing reduced NPT2a plasma membrane expression in oocytes co-expressing both proteins, whereas NPT2a protein level in total cell lysate was the same in NPT2a- and NPT2a+CFTR-oocytes. In NPT2a+CFTR- but not in NPT2a-oocytes, IPi and NPT2a surface expression were increased upon PKA stimulation, whereas stimulation of Exchange Protein directly Activated by cAMP (EPAC) had no effect. When NPT2a-oocytes were injected with NEG2, a short amino-acid sequence from the CFTR regulatory domain that regulates PKA-dependent CFTR trafficking to the plasma membrane, IPi values and NPT2a membrane expression were diminished, and could be enhanced by PKA stimulation, thereby mimicking the effects of CFTR co-expression.We conclude that when both CFTR and NPT2a are expressed in X. laevis oocytes, CFTR confers to NPT2a a cAMPi-dependent trafficking to the membrane. This functional interaction raises the hypothesis that CFTR may play a role in phosphate homeostasis

    The ST22 chronology for the Skytrain Ice Rise ice core – Part 2: An age model to the last interglacial and disturbed deep stratigraphy

    Get PDF
    We present an age model for the 651 m deep ice core from Skytrain Ice Rise, situated inland of the Ronne Ice Shelf, Antarctica. The top 2000 years have previously been dated using age markers interpolated through annual layer counting. Below this, we align the Skytrain core to the AICC2012 age model using tie points in the ice and air phase, and we apply the Paleochrono program to obtain the best fit to the tie points and glaciological constraints. In the gas phase, ties are made using methane and, in critical sections, δ18Oair; in the ice phase ties are through 10Be across the Laschamps event and through ice chemistry related to long-range dust transport and deposition. This strategy provides a good outcome to about 108 ka (∼ 605 m). Beyond that there are signs of flow disturbance, with a section of ice probably repeated. Nonetheless values of CH4 and δ18Oair confirm that part of the last interglacial (LIG), from about 117–126 ka (617–627 m), is present and in chronological order. Below this there are clear signs of stratigraphic disturbance, with rapid oscillation of values in both the ice and gas phase at the base of the LIG section, below 628 m. Based on methane values, the warmest part of the LIG and the coldest part of the penultimate glacial are missing from our record. Ice below 631 m appears to be of age &gt; 150 ka.</p

    The ST22 chronology for the Skytrain Ice Rise ice core – Part 2: An age model to the last interglacial and disturbed deep stratigraphy

    Get PDF
    We present an age model for the 651 m deep ice core from Skytrain Ice Rise, situated inland of the Ronne Ice Shelf, Antarctica. The top 2000 years have previously been dated using age markers interpolated through annual layer counting. Below this, we align the Skytrain core to the AICC2012 age model using tie points in the ice and air phase, and we apply the Paleochrono program to obtain the best fit to the tie points and glaciological constraints. In the gas phase, ties are made using methane and, in critical sections, δ18Oair; in the ice phase ties are through 10Be across the Laschamps event and through ice chemistry related to long-range dust transport and deposition. This strategy provides a good outcome to about 108 ka (∼ 605 m). Beyond that there are signs of flow disturbance, with a section of ice probably repeated. Nonetheless values of CH4 and δ18Oair confirm that part of the last interglacial (LIG), from about 117–126 ka (617–627 m), is present and in chronological order. Below this there are clear signs of stratigraphic disturbance, with rapid oscillation of values in both the ice and gas phase at the base of the LIG section, below 628 m. Based on methane values, the warmest part of the LIG and the coldest part of the penultimate glacial are missing from our record. Ice below 631 m appears to be of age > 150 ka

    Race-Free Estimated Glomerular Filtration Rate Equation in Kidney Transplant Recipients: Development and Validation Study

    Get PDF
    OBJECTIVE: To compare the performance of a newly developed race-free kidney recipient specific glomerular filtration rate (GFR) equation with the three current main equations for measuring GFR in kidney transplant recipients. DESIGN: Development and validation study SETTING: 17 cohorts in Europe, the United States, and Australia (14 transplant centres, three clinical trials). PARTICIPANTS: 15 489 adults (3622 in development cohort (Necker, Saint Louis, and Toulouse hospitals, France), 11 867 in multiple external validation cohorts) who received kidney transplants between 1 January 2000 and 1 January 2021. MAIN OUTCOME MEASURE: The main outcome measure was GFR, measured according to local practice. Performance of the GFR equations was assessed using P RESULTS: The study included 15 489 participants, with 50 464 mGFR and eGFR values. The mean GFR was 53.18 mL/min/1.73m2 (SD 17.23) in the development cohort and 55.90 mL/min/1.73m2 (19.69) in the external validation cohorts. Among the current GFR equations, the race-free CKD-EPI 2021 equation showed the lowest performance compared with the MDRD and CKD-EPI 2009 equations. When race was included in the kidney recipient specific GFR equation, performance did not increase. The race-free kidney recipient specific GFR equation showed significantly improved performance compared with the race-free CKD-EPI 2021 equation and performed well in the external validation cohorts (P30 ranging from 73.0% to 91.3%). The race-free kidney recipient specific GFR equation performed well in several subpopulations of kidney transplant recipients stratified by race (P30 73.0-91.3%), sex (72.7-91.4%), age (70.3-92.0%), body mass index (64.5-100%), donor type (58.5-92.9%), donor age (68.3-94.3%), treatment (78.5-85.2%), creatinine level (72.8-91.3%), GFR measurement method (73.0-91.3%), and timing of GFR measurement post-transplant (72.9-95.5%). An online application was developed that estimates GFR based on recipient’s creatinine level, age, and sex (https://transplant-prediction-system.shinyapps.io/eGFR_equation_KTX/). CONCLUSION: A new race-free kidney recipient specific GFR equation was developed and validated using multiple, large, international cohorts of kidney transplant recipients. The equation showed high accuracy and outperformed the race-free CKD-EPI 2021 equation that was developed in individuals with native kidneys

    Race-free estimated glomerular filtration rate equation in kidney transplant recipients:development and validation study

    Get PDF
    OBJECTIVE: To compare the performance of a newly developed race-free kidney recipient specific glomerular filtration rate (GFR) equation with the three current main equations for measuring GFR in kidney transplant recipients.DESIGN: Development and validation study SETTING: 17 cohorts in Europe, the United States, and Australia (14 transplant centres, three clinical trials).PARTICIPANTS: 15 489 adults (3622 in development cohort (Necker, Saint Louis, and Toulouse hospitals, France), 11 867 in multiple external validation cohorts) who received kidney transplants between 1 January 2000 and 1 January 2021.MAIN OUTCOME MEASURE: The main outcome measure was GFR, measured according to local practice. Performance of the GFR equations was assessed using P 30 (proportion of estimated GFR (eGFR) within 30% of measured GFR (mGFR)) and correct classification (agreement between eGFR and mGFR according to GFR stages). The race-free equation, based on creatinine level, age, and sex, was developed using additive and multiplicative linear regressions, and its performance was compared with the three current main GFR equations: Modification of Diet in Renal Disease (MDRD) equation, Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) 2009 equation, and race-free CKD-EPI 2021 equation. RESULTS: The study included 15 489 participants, with 50 464 mGFR and eGFR values. The mean GFR was 53.18 mL/min/1.73m 2 (SD 17.23) in the development cohort and 55.90 mL/min/1.73m 2 (19.69) in the external validation cohorts. Among the current GFR equations, the race-free CKD-EPI 2021 equation showed the lowest performance compared with the MDRD and CKD-EPI 2009 equations. When race was included in the kidney recipient specific GFR equation, performance did not increase. The race-free kidney recipient specific GFR equation showed significantly improved performance compared with the race-free CKD-EPI 2021 equation and performed well in the external validation cohorts (P 30 ranging from 73.0% to 91.3%). The race-free kidney recipient specific GFR equation performed well in several subpopulations of kidney transplant recipients stratified by race (P 30 73.0-91.3%), sex (72.7-91.4%), age (70.3-92.0%), body mass index (64.5-100%), donor type (58.5-92.9%), donor age (68.3-94.3%), treatment (78.5-85.2%), creatinine level (72.8-91.3%), GFR measurement method (73.0-91.3%), and timing of GFR measurement post-transplant (72.9-95.5%). An online application was developed that estimates GFR based on recipient's creatinine level, age, and sex (https://transplant-prediction-system.shinyapps.io/eGFR_equation_KTX/). CONCLUSION: A new race-free kidney recipient specific GFR equation was developed and validated using multiple, large, international cohorts of kidney transplant recipients. The equation showed high accuracy and outperformed the race-free CKD-EPI 2021 equation that was developed in individuals with native kidneys.TRIAL REGISTRATION: ClinicalTrials.gov NCT05229939.</p

    Метод интегрирования дифференциальных уравнений динамики электрических машин с вращающимся ротором

    Get PDF
    Для исследования переходных процессов в электротехнических системах, содержащих статические электромагнитные устройства, включенные в сложные электрические схемы, разработан программный комплекс Colo, функционирующий на основе магнитоэлектрических схем замещения в матричной форме. Главная матрица комплекса Colo содержит коэффициенты при искомых токах или магнитных потоках. Моделирование динамических процессов в электрических машинах с вращающимся ротором связано с интегрированием дифференциальных уравнений, в которые входят произведения искомых величин, поэтому непосредственно эти уравнения не могут решаться в программном комплексе Colo

    Integrative phylogenetic, phylogeographic and morphological characterisation of the Unio crassus species complex reveals cryptic diversity with important conservation implications

    Get PDF
    The global decline of freshwater mussels and their crucial ecological services highlight the need to understand their phylogeny, phylogeography and patterns of genetic diversity to guide conservation efforts. Such knowledge is urgently needed for Unio crassus, a highly imperilled species originally widespread throughout Europe and southwest Asia. Recent studies have resurrected several species from synonymy based on mitochondrial data, revealing U. crassus to be a complex of cryptic species. To address long-standing taxonomic uncertainties hindering effective conservation, we integrate morphometric, phylogenetic, and phylogeographic analyses to examine species diversity within the U. crassus complex across its entire range. Phylogenetic analyses were performed using cytochrome c oxidase subunit I (815 specimens from 182 populations) and, for selected specimens, whole mitogenome sequences and Anchored Hybrid Enrichment (AHE) data on ∼ 600 nuclear loci. Mito-nuclear discordance was detected, consistent with mitochondrial DNA gene flow between some species during the Pliocene and Pleistocene. Fossil-calibrated phylogenies based on AHE data support a Mediterranean origin for the U. crassus complex in the Early Miocene. The results of our integrative approach support 12 species in the group: the previously recognised Unio bruguierianus, Unio carneus, Unio crassus, Unio damascensis, Unio ionicus, Unio sesirmensis, and Unio tumidiformis, and the reinstatement of five nominal taxa: Unio desectus stat. rev., Unio gontierii stat. rev., Unio mardinensis stat. rev., Unio nanus stat. rev., and Unio vicarius stat. rev. Morphometric analyses of shell contours reveal important morphospace overlaps among these species, highlighting cryptic, but geographically structured, diversity. The distribution, taxonomy, phylogeography, and conservation of each species are succinctly described.We thank Ana-Maria Benedek, Monica Sîrbu and Jouni Leinikki for their assistance with the fieldwork, and to Jeroen Goud, Sankurie Pye, Fiona Ware, Emily Mitchell, and Aleksandra Skawina for their assistance with the taxonomic investigation. We would also like to thank the editor, Dr. Guillermo Ortí, and two anonymous reviewers for their time and effort in reviewing our manuscript and for their insightful comments and valuable improvements to our work. This publication is based upon work from COST Action CA18239: CONFREMU - Conservation of freshwater mussels: a pan-European approach, supported by COST (European Cooperation in Science and Technology), including STSMs, the interaction of the authors and the writing of the paper. This work was supported by the project ConBiomics: The Missing Approach for the Conservation of Freshwater Bivalves Project No. POCI-01-0145-FEDER-030286, co-financed by FEDER through POCI and by FCT - Fundaç˜ao para a Ciˆencia e a Tecnologia, through national funds. Strategic funding UIDB/04423/2020 and UIDP/04423/2020 was provided by FCT. FCT also supported DVG (2020.03848.CEECIND), EF (CEECINST/00027/ 2021/CP2789/CT0003) and MLL (2020.03608.CEECIND). INB, AVK and IVV were supported by the Russian Science Foundation under grants (19-14-00066-P), (21-17-00126) and (21-74-10130) respectively. BVB acknowledges the bioinformatics platform of UMR 8198 for the computing resources to perform time-calibrated phylogenetic analyses; this platform is in part funded by CPER research project CLIMIBIO through the French Minist`ere de l’Enseignement Sup´erieur et de la Recherche, the Agence Nationale de la Recherche, the European Fund for Regional Development (FEDER) and the region Hauts-de-France (HdF). Support to KD came from the Czech Science Foundation (19–05510S). TT and MT were supported by the National Science Fund of Bulgaria under the project ‘Conservation of freshwater mussels on the Balkan Peninsula’ (KP-06-COST-9/20.07.2022). Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the United States Government.info:eu-repo/semantics/publishedVersio

    The ever-expanding conundrum of primary osteoporosis: aetiopathogenesis, diagnosis, and treatment

    Full text link
    corecore