107 research outputs found

    On the evolution of irradiated turbulent clouds: A comparative study between modes of triggered star-formation

    Full text link
    Here we examine the evolution of irradiated clouds using the Smoothed Particle Hydrodynamics ({\small SPH}) algorithm coupled with a ray-tracing scheme that calculates the position of the ionisation-front at each timestep. We present results from simulations performed for three choices of {\small IR}-flux spanning the range of fluxes emitted by a typical {\small B}-type star to a cluster of {\small OB}-type stars. The extent of photo-ablation, of course, depends on the strength of the incident flux and a strong flux of {\small IR} severely ablates a {\small MC}. Consequently, the first star-formation sites appear in the dense shocked layer along the edges of the irradiated cloud. Radiation-induced turbulence readily generates dense filamentary structure within the photo-ablated cloud although several new star-forming sites also appear in some of the densest regions at the junctions of these filaments. Prevalent physical conditions within a {\small MC} play a crucial role in determining the mode, i.e., filamentary as compared to isolated pockets, of star-formation, the timescale on which stars form and the distribution of stellar masses. The probability density functions ({\small PDF}s) derived for irradiated clouds in this study are intriguing due to their resemblance with those presented in a recent census of irradiated {\small MC}s. Furthermore, irrespective of the nature of turbulence, the protostellar mass-functions({\small MF}s) derived in this study follow a power-law distribution. When turbulence within the cloud is driven by a relatively strong flux of {\small IR} such as that emitted by a massive {\small O}-type star or a cluster of such stars, the {\small MF} approaches the canonical form due to Salpeter, and even turns-over for protostellar masses smaller than \sim0.2 M_{\odot}.Comment: 13 pages, 19 figures, 3 tables. Rendered images of significantly lowered resolution have been deliberately submitted to stay within the maximum permissible limits of size. Also, the original abstract has been shortened. To be published by the Monthly Notices of the RA

    Intravenous levosimendan-norepinephrine combination during off-pump coronary artery bypass grafting in a hemodialysis patient with severe myocardial dysfunction

    Get PDF
    This the case of a 63 year-old man with end-stage renal disease (on chronic hemodialysis), unstable angina and significantly impaired myocardial contractility with low left ventricular ejection fraction, who underwent off-pump one vessel coronary bypass surgery. Combined continuous levosimendan and norepinephrine infusion (at 0.07 μg/kg/min and 0.05 μg/kg/min respectively) started immediately after anesthesia induction and continued for 24 hours. The levosimendan/norepinephrine combination helped maintain an appropriate hemodynamic profile, thereby contributing to uneventful completion of surgery and postoperative hemodynamic stability. Although levosimendan is considered contraindicated in ESRD patients, this case report suggests that combined perioperative levosimendan/norepinephrine administration can be useful in carefully selected hemodialysis patients with impaired myocardial contractility and ongoing myocardial ischemia, who undergo off-pump myocardial revascularization surgery

    Ischemia reperfusion dysfunction changes model-estimated kinetics of myofilament interaction due to inotropic drugs in isolated hearts

    Get PDF
    BACKGROUND: The phase-space relationship between simultaneously measured myoplasmic [Ca(2+)] and isovolumetric left ventricular pressure (LVP) in guinea pig intact hearts is altered by ischemic and inotropic interventions. Our objective was to mathematically model this phase-space relationship between [Ca(2+)] and LVP with a focus on the changes in cross-bridge kinetics and myofilament Ca(2+ )sensitivity responsible for alterations in Ca(2+)-contraction coupling due to inotropic drugs in the presence and absence of ischemia reperfusion (IR) injury. METHODS: We used a four state computational model to predict LVP using experimentally measured, averaged myoplasmic [Ca(2+)] transients from unpaced, isolated guinea pig hearts as the model input. Values of model parameters were estimated by minimizing the error between experimentally measured LVP and model-predicted LVP. RESULTS: We found that IR injury resulted in reduced myofilament Ca(2+ )sensitivity, and decreased cross-bridge association and dissociation rates. Dopamine (8 μM) reduced myofilament Ca(2+ )sensitivity before, but enhanced it after ischemia while improving cross-bridge kinetics before and after IR injury. Dobutamine (4 μM) reduced myofilament Ca(2+ )sensitivity while improving cross-bridge kinetics before and after ischemia. Digoxin (1 μM) increased myofilament Ca(2+ )sensitivity and cross-bridge kinetics after but not before ischemia. Levosimendan (1 μM) enhanced myofilament Ca(2+ )affinity and cross-bridge kinetics only after ischemia. CONCLUSION: Estimated model parameters reveal mechanistic changes in Ca(2+)-contraction coupling due to IR injury, specifically the inefficient utilization of Ca(2+ )for contractile function with diastolic contracture (increase in resting diastolic LVP). The model parameters also reveal drug-induced improvements in Ca(2+)-contraction coupling before and after IR injury

    OGLE-2017-BLG-0329L: A Microlensing Binary Characterized with Dramatically Enhanced Precision Using Data from Space-based Observations

    Get PDF
    Mass measurements of gravitational microlenses require one to determine the microlens parallax π E, but precise π E measurement, in many cases, is hampered due to the subtlety of the microlens-parallax signal combined with the difficulty of distinguishing the signal from those induced by other higher-order effects. In this work, we present the analysis of the binary-lens event OGLE-2017-BLG-0329, for which π E is measured with a dramatically improved precision using additional data from space-based Spitzer observations. We find that while the parallax model based on the ground-based data cannot be distinguished from a zero-π E model at the 2σ level, the addition of the Spitzer data enables us to identify two classes of solutions, each composed of a pair of solutions according to the well-known ecliptic degeneracy. It is found that the space-based data reduce the measurement uncertainties of the north and east components of the microlens-parallax vector π E by factors ~18 and ~4, respectively. With the measured microlens parallax combined with the angular Einstein radius measured from the resolved caustic crossings, we find that the lens is composed of a binary with component masses of either (M1, M2) ~ (1.1, 0.8) M⊙ or ~(0.4, 0.3) M⊙ according to the two solution classes. The first solution is significantly favored but the second cannot be securely ruled out based on the microlensing data alone. However, the degeneracy can be resolved from adaptive optics observations taken ~10 years after the event

    The Very Slow Wind From the Pulsating Semiregular Red Giant L2 Pup

    Full text link
    We have obtained 11.7 and 17.9 micron images at the Keck I telescope of the circumstellar dust emission from L2 Pup, one of the nearest (D = 61 pc) mass-losing, pulsating, red giants that has a substantial infrared excess. We propose that the wind may be driven by the stellar pulsations with radiation pressure on dust being relatively unimportant, as described in some recent calculations. L2 Pup may serve as the prototype of this phase of stellar evolution where it could lose about 15% of its initial main sequence mass.Comment: ApJ, in pres

    Transit timing variations in the WASP-4 planetary system*

    Get PDF
    Abstract Transits in the planetary system WASP-4 were recently found to occur 80 s earlier than expected in observations from the TESS satellite. We present 22 new times of mid-transit that confirm the existence of transit timing variations, and are well fitted by a quadratic ephemeris with period decay dP/dt = −9.2 ± 1.1 ms yr−1. We rule out instrumental issues, stellar activity and the Applegate mechanism as possible causes. The light-time effect is also not favoured due to the non-detection of changes in the systemic velocity. Orbital decay and apsidal precession are plausible but unproven. WASP-4 b is only the third hot Jupiter known to show transit timing variations to high confidence. We discuss a variety of observations of this and other planetary systems that would be useful in improving our understanding of WASP-4 in particular and orbital decay in general

    86 GHz SiO maser survey of late-type stars in the Inner Galaxy. I. Observational data

    Get PDF
    We present 86 GHz (v = 1, J = 2 -1) SiO maser line observations with the IRAM 30-m telescope of a sample of 441 late-type stars in the Inner Galaxy (-4 degr < l < +30 degr). These stars were selected on basis of their infrared magnitudes and colours from the ISOGAL and MSX catalogues. SiO maser emission was detected in 271 sources, and their line-of-sight velocities indicate that the stars are located in the Inner Galaxy. These new detections double the number of line-of-sight velocities available from previous SiO and OH maser observations in the area covered by our survey and are, together with other samples of e.g. OH/IR stars, useful for kinematic studies of the central parts of the Galaxy.Comment: 15 pages, 12 figures, accepted by A&A Journa

    Pharmacological reactivation of MYC-dependent apoptosis induces susceptibility to anti-PD-1 immunotherapy

    Get PDF
    Elevated MYC expression sensitizes tumor cells to apoptosis but the therapeutic potential of this mechanism remains unclear. We find, in a model of MYC-driven breast cancer, that pharmacological activation of AMPK strongly synergizes with BCL-2/BCL-X-L inhibitors to activate apoptosis. We demonstrate the translational potential of an AMPK and BCL-2/BCL-X-L co-targeting strategy in ex vivo and in vivo models of MYC-high breast cancer. Metformin combined with navitoclax or venetoclax efficiently inhibited tumor growth, conferred survival benefits and induced tumor infiltration by immune cells. However, withdrawal of the drugs allowed tumor re-growth with presentation of PD-1+/CD8+ T cell infiltrates, suggesting immune escape. A two-step treatment regimen, beginning with neoadjuvant metformin+venetoclax to induce apoptosis and followed by adjuvant metformin+venetoclax+anti-PD-1 treatment to overcome immune escape, led to durable antitumor responses even after drug withdrawal. We demonstrate that pharmacological reactivation of MYC-dependent apoptosis is a powerful antitumor strategy involving both tumor cell depletion and immunosurveillance

    OGLE-2017-BLG-0406: Spitzer microlens parallax reveals Saturn-mass planet orbiting M-dwarf host in the inner galactic disk

    Get PDF
    Funding: Work by Y.H. was supported by JSPS KAKENHI Grant Number 17J02146. DPB, AB, and CR were supported by NASA through grant NASA-80NSSC18K0274. Work by N.K. is supported by JSPS KAKENHI Grant Number JP18J00897. Work by AG was supported by AST-1516842 from the US NSF and by JPL grant 1500811. AG received support from the European Research Council under the European Unions Seventh Framework Programme (FP 7) ERC Grant Agreement n.[321035]. Work by C.H. was supported by the grants of the National Research Foundation of Korea (2017R1A4A1015178 and 2019R1A2C2085965). YT acknowledges the support of DFG priority program SPP 1992 ”Exploring the Diversity of Extrasolar Planets” (WA 1047/11-1).We report the discovery and analysis of the planetary microlensing event OGLE-2017-BLG-0406, which was observed both from the ground and by the Spitzer satellite in a solar orbit. At high magnification, the anomaly in the light curve was densely observed by ground-based-survey and follow-up groups, and it was found to be explained by a planetary lens with a planet/host mass ratio of q = 7.0 x 10-4 from the light-curve modeling. The ground-only and Spitzer-"only" data each provide very strong one-dimensional (1-D) constraints on the 2-D microlens parallax vector πE. When combined, these yield a precise measurement of πE, and so of the masses of the host Mhost = 0.56 ± 0.07 M⊙ and planet Mplanet = 0.41 ± 0.05 MJup. The system lies at a distance DL = 5.2 ± 0.5 kpc from the Sun toward the Galactic bulge, and the host is more likely to be a disk population star according to the kinematics of the lens. The projected separation of the planet from the host is a⊥ = 3.5 ± 0.3 au, i.e., just over twice the snow line. The Galactic-disk kinematics are established in part from a precise measurement of the source proper motion based on OGLE-IV data. By contrast, the Gaia proper-motion measurement of the source suffers from a catastrophic 10σ error.PostprintPeer reviewe

    OGLE-2017-BLG-1186: first application of asteroseismology and Gaussian processes to microlensing

    Get PDF
    We present the analysis of the event OGLE-2017-BLG-1186 from the 2017 Spitzer microlensing campaign. This is a remarkable microlensing event because its source is photometrically bright and variable, which makes it possible to perform an asteroseismic analysis using ground-based data. We find that the source star is an oscillating red giant with average timescale of ∼9 days. The asteroseismic analysis also provides us source properties including the source angular size (∼27μas) and distance (∼11.5 kpc), which are essential for inferring the properties of the lens. When fitting the light curve, we test the feasibility of Gaussian Processes (GPs) in handling the correlated noise caused by the variable source. We find that the parameters from the GP model are generally more loosely constrained than those from the traditional χ2 minimization method. We note that this event is the first microlensing system for which asteroseismology and GPs have been used to account for the variable source. With both finite-source effect and microlens parallax measured, we find that the lens is likely a ∼0.045 M⊙ brown dwarf at distance ∼9.0 kpc, or a ∼0.073 M⊙ ultracool dwarf at distance ∼9.8 kpc. Combining the estimated lens properties with a Bayesian analysis using a Galactic model, we find a 35% probability for the lens to be a bulge object and 65% to be a background disk object
    corecore