156 research outputs found

    Multiresolution pattern recognition of small volcanos in Magellan data

    Get PDF
    The Magellan data is a treasure-trove for scientific analysis of venusian geology, providing far more detail than was previously available from Pioneer Venus, Venera 15/16, or ground-based radar observations. However, at this point, planetary scientists are being overwhelmed by the sheer quantities of data collected--data analysis technology has not kept pace with our ability to collect and store it. In particular, 'small-shield' volcanos (less than 20 km in diameter) are the most abundant visible geologic feature on the planet. It is estimated, based on extrapolating from previous studies and knowledge of the underlying geologic processes, that there should be on the order of 10(exp 5) to 10(exp 6) of these volcanos visible in the Magellan data. Identifying and studying these volcanos is fundamental to a proper understanding of the geologic evolution of Venus. However, locating and parameterizing them in a manual manner is very time-consuming. Hence, we have undertaken the development of techniques to partially automate this task. The goal is not the unrealistic one of total automation, but rather the development of a useful tool to aid the project scientists. The primary constraints for this particular problem are as follows: (1) the method must be reasonably robust; and (2) the method must be reasonably fast. Unlike most geological features, the small volcanos of Venus can be ascribed to a basic process that produces features with a short list of readily defined characteristics differing significantly from other surface features on Venus. For pattern recognition purposes the relevant criteria include the following: (1) a circular planimetric outline; (2) known diameter frequency distribution from preliminary studies; (3) a limited number of basic morphological shapes; and (4) the common occurrence of a single, circular summit pit at the center of the edifice

    Evidence for Environmental Noise Effects on Health for the United Kingdom Policy Context: A Systematic Review of the Effects of Environmental Noise on Mental Health, Wellbeing, Quality of Life, Cancer, Dementia, Birth, Reproductive Outcomes, and Cognition

    Get PDF
    This systematic review commissioned by the UK Department for the Environment, Food and Rural Affairs (Defra), considers how the evidence base for noise effects on health has changed following the recent reviews undertaken for the WHO Environmental Noise Guidelines. This systematic review assesses the quality of the evidence for environmental noise effects on mental health, wellbeing, and quality of life; birth and reproductive outcomes; and cognition for papers published since the WHO reviews (mid-2015 to March 2019), as well as for cancer and dementia (January 2014 to March 2019). Using the GRADE methodology (Grading of Recommendations Assessment, Development and Evaluation) most evidence was rated as low quality as opposed to very low quality in the previous reviews. There is now low-quality evidence for a harmful effect of road traffic noise on medication use and interview measures of depression and anxiety and low quality evidence for a harmful effect of road traffic noise, aircraft noise, and railway noise on some cancer outcomes. Many other conclusions from the WHO evidence reviews remain unchanged. The conclusions remain limited by the low number of studies for many outcomes. The quantification of health effects for other noise sources including wind turbine, neighbour, industrial, and combined noise remains a research priority

    Opportunity, Geologic and Structural Context of Aqueous Alteration in Noachian Outcrops, Marathon Valley and Rim and Endeavour Crater

    Get PDF
    In its 12th year of exploration and 1600 sols since arrival at the rim of the 22 km-diameter Noachian Endeavour impact crater, Mars Exploration Rover Opportunity traversed from the summit of the western rim segment "Cape Tribulation" to "Marathon Valley", a shallow trough dissecting the rim and the site of strong orbital detection of smectites. In situ analysis of the exposures within Marathon Valley is establishing some of the geologic and geochemical controls on the aqueous alteration responsible for smectite detection known to occur in crater rims throughout Noachian terrains of Mars

    The Origin of Ina: Evidence for Inflated Lava Flows on the Moon

    Get PDF
    Ina is an enigmatic volcanic feature on the Moon known for its irregularly shaped mounds, the origin of which has been debated since the Apollo Missions. Three main units are observed on the floor of the depression (2.9 km across, < or =64 m deep) located at the summit of a low-shield volcano: irregularly shaped mounds up to 20 m tall, a lower unit 1 to 5 m in relief that surrounds the mounds, and blocky material. Analyses of Lunar Reconnaissance Orbiter Camera images and topography show that features in Ina are morphologically similar to terrestrial inflated lava flows. Comparison of these unusual lunar mounds and possible terrestrial analogs leads us to hypothesize that features in Ina were formed through lava flow inflation processes. While the source of the lava remains unclear, this new model suggests that as the mounds inflated, breakouts along their margins served as sources for surface flows that created the lower morphologic unit. Over time, mass wasting of both morphologic units has exposed fresh surfaces observed in the blocky unit. Ina is different than the terrestrial analogs presented in this study in that the lunar features formed within a depression, no vent sources are observed, and no cracks are observed on the mounds. However, lava flow inflation processes explain many of the morphologic relationships observed in Ina and are proposed to be analogous with inflated lava flows on Earth

    The effect of impact angle on craters formed by hypervelocity particles

    Get PDF
    The Space Power Institute (SPI) at Auburn University has conducted experiments on the effects of impact angle on crater morphology and impactor residue retention for hypervelocity impacts. Copper target plates were set at angles of 30 deg, 45 deg, 60 deg, and 75 deg from the particle flight path. For the 30 deg and 45 deg impacts, in the velocity regime greater than 8 km s(exp -1) the resultant craters are almost identical to normal incidence impacts. The only difference found was in the apparent distribution of particle residue within the crater, and further research is needed to verify this. The 60 deg and 75 deg impacts showed marked differences in crater symmetry, crater lip shape, and particle residue distribution in the same velocity regime. Impactor residue shock fractionation effects have been quantified in first-order. It is concluded that a combination of analysis techniques can yield further information on impact velocity, direction, and angle of incidence

    Opportunity In Situ Geologic Context of Aqueous Alteration Along Offsets in the Rim of Endeavour Crater

    Get PDF
    Mars Exploration Rover Opportunity traversed 7.9 km and 27 degrees of arc along the rim of the 22 km-diameter Noachian "Endeavour" impact crater since its arrival 1200 sols ago. Areas of aqueous and low-grade thermal alteration, and changes in structure, attitude, and macroscopic texture of outcrops are notable across several discontinuities between segments of the crater rim. The discontinuities and other post-impact joints and fractures coincide with sites of apparent deep fluid circulation processes responsible for thermal and chemical alteration of local outcrops

    Rock spectral classes observed by the Spirit Rover’s Pancam on the Gusev Crater Plains and in the Columbia Hills

    Get PDF
    This paper examines the ferrous and ferric iron mineralogy of rocks inferred from 246 visible/near-infrared (430&ndash;1010 nm) multispectral observations made by the Mars Exploration Rover Spirit&rsquo;s Pancam on its traverse from its landing site to its second Winter Haven location. Principal component, correspondence analyses, and a sequential maximum angle convex cone technique were used to identify 14 candidate classes. Spectra from the West Spur of Husband Hill and the Watchtower area had the highest 535 and 601 nm band depths indicating that these areas were more oxidized. Differences in the depth and band center of a near infrared (NIR) absorption feature were observed using 904 nm band depth and 803:904 nm ratio and parameters gauging the 754&ndash;864 and 754&ndash;1009 nm slopes. Spectra of rocks from the southern flank of Husband Hill had negative 754&ndash;1009 nm slopes and a broad NIR absorption consistent with high olivine abundances. Rocks observed on the lower West Spur, at the Cumberland Ridge locale, at the Husband Hill summit, and at the Haskin Ridge locale had deep 904 nm band depths and steep 754&ndash;864 nm slopes consistent with greater pyroxene abundances. These observations are consistent with results on iron-bearing mineralogy from Spirit&rsquo;s Mo&uml;ssbauer spectrometer. Comparisons of these rock spectral classes with a set of terrestrial analog samples found similarities between the West Spur and Watchtower classes and red hematite-bearing impact melts. Fewer similarities were found in comparisons of the Columbia Hills classes with basaltic hydrovolcanic tephras

    Sulfate deposition in subsurface regolith in Gusev crater, Mars

    Get PDF
    Excavating into the shallow Martian subsurface has the potential to expose stratigraphic layers and mature regolith, which may hold a record of more ancient aqueous interactions than those expected under current Martian surface conditions. During the Spirit rover&rsquo;s exploration of Gusev crater, rover wheels were used to dig three trenches into the subsurface regolith down to 6&ndash;11 cm depth: Road Cut, the Big Hole, and The Boroughs. A high oxidation state of Fe and high concentrations of Mg, S, Cl, and Br were found in the subsurface regolith within the two trenches on the plains, between the Bonneville crater and the foot of Columbia Hills. Data analyses on the basis of geochemistry and mineralogy observations suggest the deposition of sulfate minerals within the subsurface regolith, mainly Mg-sulfates accompanied by minor Ca-sulfates and perhaps Fe-sulfates. An increase of Fe2O3, an excess of SiO2, and a minor decrease in the olivine proportion relative to surface materials are also inferred. Three hypotheses are proposed to explain the geochemical trends observed in trenches: (1) multiple episodes of acidic fluid infiltration, accompanied by in situ interaction with igneous minerals and salt deposition; (2) an open hydrologic system characterized by ion transportation in the fluid, subsequent evaporation of the fluid, and salt deposition; and (3) emplacement and mixing of impact ejecta of variable composition. While all three may have plausibly contributed to the current state of the subsurface regolith, the geochemical data are most consistent with ion transportation by fluids and salt deposition as a result of open-system hydrologic behavior. Although sulfates make up &gt;20 wt.% of the regolith in the wall of The Boroughs trench, a higher hydrated sulfate than kieserite within The Boroughs or a greater abundance of sulfates elsewhere than is seen in The Boroughs wall regolith would be needed to hold the structural water indicated by the water-equivalent hydrogen concentration observed by the Gamma-Ray Spectrometer on Odyssey in the Gusev region

    Iron-Manganese Redox Reactions in Endeavour Crater Rim Apron Rocks

    Get PDF
    The Mars Exploration Rover Opportunity has been exploring Noachian age rocks and outcrops on the rim of the 22 km diameter Endeavour crater since August 2011. The Cape York area is a low-lying rim of Endeavour that contains 3 distinct lithologies: 1) the stratigraphically lowest Matijevic fm of pre-impact lithology, 2) Shoemaker fm of impact breccias, and 3) the stratigraphically highest rim lithology Grasberg fm of post-impact sediments that drape the lower slopes of the rim. The sulfate-rich sediment of the Burns fm lies unconformably over the Grasberg fm. Ca-sulfate veins were discovered in Grasberg fm sediments; the sulfates precipitated from aqueous fluids flowing upward through these materials. Opportunity investigated the chemistry and morphology of outcrops in the Matijevic fm that have Fe(sup 3+)-rich smectite detected by orbital signatures returned by CRISM on MRO. Matijevic fm also contains "boxwork" fractures with chemistry consistent with an Al-rich smectite and veins that appear to be rich in Ca-sulfate. More recently on Cape Tribulation, Opportunity has characterized two S-, Mg- and Mn-rich rich rocks overturned and fractured by the rover's wheels on Cook Haven. Those rocks have been dubbed "Pinnacle Island" and "Stuart Island" and will be referred to as the "Island" rocks. The objectives of this study are to characterize the Fe and Mn contents in the Cape York materials, including the two Island rocks, and to provide a model for Mn mobilization and precipitation. Detailed geochemistry of Endeavour rim rocks is presented in a companion paper. Geochemical trends and elemental associations were obtained from data returned by the Alpha Particle X-ray Spectrometer (APXS) on Opportunity
    • …
    corecore