77 research outputs found

    Assessment of C, N and Si isotopes as tracers of past ocean nutrient and carbon cycling

    Get PDF
    Biological productivity in the ocean directly influences the partitioning of carbon between the atmosphere and ocean interior. Through this carbon cycle feedback, changing ocean productivity has long been hypothesized as a key pathway for modulating past atmospheric carbon dioxide levels and hence global climate. Because phytoplankton preferentially assimilate the light isotopes of carbon and the major nutrients nitrate and silicic acid, stable isotopes of carbon (C), nitrogen (N), and silicon (Si) in seawater and marine sediments can inform on ocean carbon and nutrient cycling, and by extension the relationship with biological productivity and global climate. Here, we compile water column C, N, and Si stable isotopes from GEOTRACES-era data in four key ocean regions to review geochemical proxies of oceanic carbon and nutrient cycling based on the C, N, and Si isotopic composition of marine sediments. External sources and sinks as well as internal cycling (including assimilation, particulate matter export, and regeneration) are discussed as likely drivers of observed C, N, and Si isotope distributions in the ocean. The potential for C, N, and Si isotope measurements in sedimentary archives to record aspects of past ocean C and nutrient cycling is evaluated, along with key uncertainties and limitations associated with each proxy. Constraints on ocean C and nutrient cycling during late Quaternary glacial-interglacial cycles and over the Cenozoic are examined. This review highlights opportunities for future research using multielement stable isotope proxy applications and emphasizes the importance of such applications to reconstructing past changes in the oceans and climate system

    The first global deep-sea stable isotope assessment reveals the unique trophic ecology of Vampire Squid Vampyroteuthis infernalis (Cephalopoda)

    Get PDF
    Vampyroteuthis infernalis Chun, 1903, is a widely distributed deepwater cephalopod with unique morphology and phylogenetic position. We assessed its habitat and trophic ecology on a global scale via stable isotope analyses of a unique collection of beaks from 104 specimens from the Atlantic, Pacific and Indian Oceans. Cephalopods typically are active predators occupying a high trophic level (TL) and exhibit an ontogenetic increase in δ15N and TL. Our results, presenting the first global comparison for a deep-sea invertebrate, demonstrate that V. infernalis has an ontogenetic decrease in δ15N and TL, coupled with niche broadening. Juveniles are mobile zooplanktivores, while larger Vampyroteuthis are slow-swimming opportunistic consumers and ingest particulate organic matter. Vampyroteuthis infernalis occupies the same TL (3.0–4.3) over its global range and has a unique niche in deep-sea ecosystems. These traits have enabled the success and abundance of this relict species inhabiting the largest ecological realm on the planet.Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. The attached file is the published pdf

    Stable Isotope Tracking of Endangered Sea Turtles: Validation with Satellite Telemetry and δ15N Analysis of Amino Acids

    Get PDF
    Effective conservation strategies for highly migratory species must incorporate information about long-distance movements and locations of high-use foraging areas. However, the inherent challenges of directly monitoring these factors call for creative research approaches and innovative application of existing tools. Highly migratory marine species, such as marine turtles, regularly travel hundreds or thousands of kilometers between breeding and feeding areas, but identification of migratory routes and habitat use patterns remains elusive. Here we use satellite telemetry in combination with compound-specific isotope analysis of amino acids to confirm that insights from bulk tissue stable isotope analysis can reveal divergent migratory strategies and within-population segregation of foraging groups of critically endangered leatherback sea turtles (Dermochelys coriacea) across the Pacific Ocean. Among the 78 turtles studied, we found a distinct dichotomy in δ15N values of bulk skin, with distinct “low δ15N” and “high δ15N” groups. δ15N analysis of amino acids confirmed that this disparity resulted from isotopic differences at the base of the food chain and not from differences in trophic position between the two groups. Satellite tracking of 13 individuals indicated that their bulk skin δ15N value was linked to the particular foraging region of each turtle. These findings confirm that prevailing marine isoscapes of foraging areas can be reflected in the isotopic compositions of marine turtle body tissues sampled at nesting beaches. We use a Bayesian mixture model to show that between 82 and 100% of the 78 skin-sampled turtles could be assigned with confidence to either the eastern Pacific or western Pacific, with 33 to 66% of all turtles foraging in the eastern Pacific. Our forensic approach validates the use of stable isotopes to depict leatherback turtle movements over broad spatial ranges and is timely for establishing wise conservation efforts in light of this species’ imminent risk of extinction in the Pacific

    The symbiotic relationship of vulnerability and resilience in Nursing

    Get PDF
    Background: Whilst the terms vulnerability and resilience are commonly used within professional nursing discourses, they are often poorly understood. Vulnerability is often framed negatively and linked to being at risk of harm, whilst resilience is often perceived as the ability to withstand challenges. Aim: The aim of this paper is to explore resilience and vulnerability; re-positioning them within the context of contemporary professional nursing practice. Design: Discussion paper. Method: Drawing upon historical and contemporary international literature, both concepts are de-constructed and then re-constructed, examining them from the position of patient care as well as from the perspective of nurses and the nursing profession. Conclusion: Resilience and vulnerability have an interdependent relationship as resilience comes into play in situations of vulnerability. Yet, contrary to the popular discourse they are multi-faceted, complex phenomena based on factors such as individual circumstances, supports and resources

    Quantification of ocean heat uptake from changes in atmospheric O2 and CO2 composition

    Get PDF
    The ocean is the main source of thermal inertia in the climate system. Ocean heat uptake during recent decades has been quantified using ocean temperature measurements. However, these estimates all use the same imperfect ocean dataset and share additional uncertainty due to sparse coverage, especially before 2007. Here, we provide an independent estimate by using measurements of atmospheric oxygen (O2) and carbon dioxide (CO2) – levels of which increase as the ocean warms and releases gases – as a whole ocean thermometer. We show that the ocean gained 1.29 ± 0.79 × 1022 Joules of heat per year between 1991 and 2016, equivalent to a planetary energy imbalance of 0.80 ± 0.49 W watts per square metre of Earth’s surface. We also find that the ocean-warming effect that led to the outgassing of O2 and CO2 can be isolated from the direct effects of anthropogenic emissions and CO2 sinks. Our result – which relies on high-precision O2 atmospheric measurements dating back to 1991 – leverages an integrative Earth system approach and provides much needed independent confirmation of heat uptake estimated from ocean data

    Global patterns and inferences of tuna movements and trophodynamics from stable isotope analysis

    No full text
    WOS:000554017400016A global dataset of carbon stable isotope (delta C-13) values from yellowfin, bigeye, and albacore tuna muscle tissue (n = 4275) was used to develop a novel tool to infer broad-scale movement and residency patterns of these highly mobile marine predators. This tool was coupled with environmental models and lipid content (C:N ratio) of tuna muscle tissues to examine ocean warming impacts on tuna ecology and bioenergetic condition across Longhurst provinces. Over a 16-year study period (2000-2015), latitudinal gradients in tuna delta C-13 values were consistent, with values decreasing with increasing latitude. Tuna delta C-13 values, reflecting modelled global phytoplankton delta C-13 landscapes ("isoscapes"), were largely related to spatial changes in oxygen concentrations at depth and temporal changes in sea surface temperature. Observed tuna isoscapes (delta C-13(LScorr)), corrected for lipid content and the Suess effect (oceanic changes in CO2 over time), were subtracted from model-predicted baseline isoscapes (Delta C-13(tuna-phyto)) to infer spatial movement and residency patterns of the different tuna species. Stable isotope niche width was calculated for each Longhurst province using Delta C-13(tuna-phyto) and baseline-corrected nitrogen isotope (delta N-15(tuna-phyto)) values to further quantify isotopic variability as evidence of movements across isoscapes. A high degree of movement-defined as the deviation from the expected range of Delta C-13(tuna-phyto) values- was evident in three Longhurst provinces: Guinea current coast, Pacific equatorial divergence, and the North Pacific equatorial counter current. The highest level of population dispersal (variability in Delta C-13(tuna-phyto) values) was observed in Longhurst provinces within the western and central Pacific Oceans and in the Guinea current coast. While lipid content was low in yellowfin and bigeye, high and variable lipid stores in albacore muscle were consistent with seasonal movements between productive foraging and oligotrophic spawning habitats. Our ability to characterize tuna movement patterns without ambiguity remains challenged by uncertainty in trophic discrimination factors and ecological (e.g. diet variability) processes. However, this study illustrates that model-corrected delta C-13 values are a valuable, relatively cost-effective tool for identifying potential areas of mixing across management zones, particularly when electronic tagging studies are limited or absent. Stable isotope analyses of tuna tissues can therefore be an additional tool for guiding spatial stock assessments on top predator movement, dispersal patterns, and how they may be altered under a changing climate
    corecore