169 research outputs found

    Time- and Cost-Optimal Parallel Algorithms for the Dominance and Visibility Graphs

    Get PDF
    The compaction step of integrated circuit design motivates associating several kinds of graphs with a collection of non-overlapping rectangles in the plane. These graphs are intended to capture various visibility relations amongst the rectangles in the collection. The contribution of this paper is to propose time- and cost-optimal algorithms to construct two such graphs, namely, the dominance graph (DG, for short) and the visibility graph (VG, for short). Specifically, we show that with a collection of n non-overlapping rectangles as input, both these structures can be constructed in Īø (log n) time using n processors in the CREW model

    Time-Optimal Tree Computations on Sparse Meshes

    Get PDF
    The main goal of this work is to fathom the suitability of the mesh with multiple broadcasting architecture (MMB) for some tree-related computations. We view our contribution at two levels: on the one hand, we exhibit time lower bounds for a number of tree-related problems on the MMB. On the other hand, we show that these lower bounds are tight by exhibiting time-optimal tree algorithms on the MMB. Specifically, we show that the task of encoding and/or decoding n-node binary and ordered trees cannot be solved faster than Ī©(log n) time even if the MMB has an infinite number of processors. We then go on to show that this lower bound is tight. We also show that the task of reconstructing n-node binary trees and ordered trees from their traversais can be performed in O(1) time on the same architecture. Our algorithms rely on novel time-optimal algorithms on sequences of parentheses that we also develop

    Function and flexibility of object exploration in kea and New Caledonian crows

    Get PDF
    Data collection with the New Caledonian crows was funded by an International Seedcorn Award from the University of York to M.L.L. This study was supported by a Rutherford Discovery Fellowship (A.H.T.). Our data are deposited at: http://dx.doi.org/10.5061/dryad.dq04j [48].A range of non-human animals frequently manipulate and explore objects in their environment, which may enable them to learn about physical properties and potentially form more abstract concepts of properties such as weight and rigidity. Whether animals can apply the information learned during their exploration to solve novel problems, however, and whether they actually change their exploratory behavior to seek functional information about objects have not been fully explored. We allowed kea (Nestor notabilis) and New Caledonian crows (Corvus moneduloides) to explore sets of novel objects both before and after encountering a task in which some of the objects could function as tools. Following this, subjects were given test trials in which they could choose among the objects they had explored to solve a tool-use task. Several individuals from both species performed above chance on these test trials, and only did so after exploring the objects, compared with a control experiment with no prior exploration phase. These results suggest that selection of functional tools may be guided by information acquired during exploration. Neither kea nor crows changed the duration or quality of their exploration after learning that the objects had a functional relevance, suggesting that birds do not adjust their behavior to explicitly seek this information.Publisher PDFPeer reviewe

    Computational Modeling to Limit the Impact Displays and Indicator Lights Have on Habitable Volume Operational Lighting Constraints

    Get PDF
    Even with no ambient lighting system "on", the International Space Station glows at night. The glow is caused by indicator lamps and displays that are not included with the specification of the ambient lighting system. How does this impact efforts to improve the astronaut's lighting environment to promote more effective sleep patterns? Do the extra indicators and displays add enough light to change the spectrum of light the crew sees during the day as well? If spacecraft environments are specifically engineered to have an ambient lighting system that emits a spectrum promoting a healthy circadian response, is there a way control the impact? The goal of this project is to investigate how additional light sources, such as displays and indicators change the effective light spectrum of the architectural lighting system and how impacts can be mitigated

    Subsecond pore-scale displacement processes and relaxation dynamics in multiphase flow

    Get PDF
    With recent advances at Xā€ray microcomputed tomography (Ī¼CT) synchrotron beam lines, it is now possible to study poreā€scale flow in porous rock under dynamic flow conditions. The collection of fourā€dimensional data allows for the direct 3ā€D visualization of fluidā€fluid displacement in porous rock as a function of time. However, even stateā€ofā€theā€art fastā€Ī¼CT scans require between one and a few seconds to complete and the much faster fluid movement occurring during that time interval is manifested as imaging artifacts in the reconstructed 3ā€D volume. We present an approach to analyze the 2ā€D radiograph data collected during fastā€Ī¼CT to study the poreā€scale displacement dynamics on the time scale of 40 ms which is near the intrinsic time scale of individual Haines jumps. We present a methodology to identify the time intervals at which poreā€scale displacement events in the observed field of view occur and hence, how reconstruction intervals can be chosen to avoid fluidā€movementā€induced reconstruction artifacts. We further quantify the size, order, frequency, and location of fluidā€fluid displacement at the millisecond time scale. We observe that after a displacement event, the poreā€scale fluid distribution relaxes to (quasiā€) equilibrium in cascades of poreā€scale fluid rearrangements with an average relaxation time for the whole cascade between 0.5 and 2.0 s. These findings help to identify the flow regimes and intrinsic time and length scales relevant to fractional flow. While the focus of the work is in the context of multiphase flow, the approach could be applied to many different Ī¼CT applications where morphological changes occur at a time scale less than that required for collecting a Ī¼CT scan

    HOW RELIABLE IS IN SITU SATURATION MONITORING (ISSM) USING X-RAY?

    Get PDF
    ABSTRACT In core flooding studies, where fluids are injected to mobilize hydrocarbons, X-ray measurements are often used to monitor the hydrocarbon saturations in the core. This is done as a function of the position in the core and as a function of time. The goal is to understand how effective the injected fluids can displace the hydrocarbons, and to measure how much hydrocarbons are left behind in the core. The calculation of in place saturations from X-ray, however, is not straightforward, and it is often unclear what the uncertainties in the calculated saturations are. In this paper, we compare calculated saturations from X-ray with saturations from direct measurement of produced hydrocarbon volumes from the core. The direct measurement is obtained using a novel apparatus which measures the production of oil using a balance under a back pressure. We show that differences between the two methods can be quite substantial and we discuss what may be the reasons causing these differences. The paper ends with a discussion on how we can improve the use of in situ saturation monitoring for unsteady state experiments

    Complexity of Discrete Energy Minimization Problems

    Full text link
    Discrete energy minimization is widely-used in computer vision and machine learning for problems such as MAP inference in graphical models. The problem, in general, is notoriously intractable, and finding the global optimal solution is known to be NP-hard. However, is it possible to approximate this problem with a reasonable ratio bound on the solution quality in polynomial time? We show in this paper that the answer is no. Specifically, we show that general energy minimization, even in the 2-label pairwise case, and planar energy minimization with three or more labels are exp-APX-complete. This finding rules out the existence of any approximation algorithm with a sub-exponential approximation ratio in the input size for these two problems, including constant factor approximations. Moreover, we collect and review the computational complexity of several subclass problems and arrange them on a complexity scale consisting of three major complexity classes -- PO, APX, and exp-APX, corresponding to problems that are solvable, approximable, and inapproximable in polynomial time. Problems in the first two complexity classes can serve as alternative tractable formulations to the inapproximable ones. This paper can help vision researchers to select an appropriate model for an application or guide them in designing new algorithms.Comment: ECCV'16 accepte

    What determines the spatial pattern in summer upwelling trends on the U.S. West Coast?

    Get PDF
    Author Posting. Ā© American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 117 (2012): C08012, doi:10.1029/2012JC008016.Analysis of sea surface temperature (SST) from coastal buoys suggests that the summertime over-shelf water temperature off the U.S. West Coast has been declining during the past 30 years at an average rate of āˆ’0.19Ā°C decadeāˆ’1. This cooling trend manifests itself more strongly off south-central California than off Oregon and northern California. The variability and trend in the upwelling north of off San Francisco are positively correlated with those of the equatorward wind, indicating a role of offshore Ekman transport in the north. In contrast, Ekman pumping associated with wind stress curls better explains the stronger and statistically more significant cooling trend in the south. While the coast-wide variability and trend in SST are strongly correlated with those of large-scale modes of climate variability, they in general fail to explain the southward intensification of the trend in SST and wind stress curl. This result suggests that the local wind stress curl, often topographically forced, may have played a role in the upwelling trend pattern.H.S. acknowledges the WHOI supports from the Coastal Research Fund in Support of Scientific Staff, the Penzance Endowed Fund in Support of Assistant Scientists, and the Andrew W. Mellon Foundation Endowed Fund for Innovative Research. K.B. and C.E. acknowledge support by the National Science Foundation through grants OCE-1059632 and OCE 1061434.2013-03-0

    Anthropogenic disturbance in a changing environment : modelling lifetime reproductive success to predict the consequences of multiple stressors on a migratory population

    Get PDF
    This study was supported by Office of Naval Research grant N00014ā€16ā€1ā€2858: ā€˜PCoD+: Developing widelyā€applicable models of the population consequences of disturbanceā€™. DPC, MM, EAM and LKS were supported by the E&P Sound and Marine Life Joint Industry Project of the International Association of Oil and Gas Producers. JAG was supported by funding from the Young Investigator Program at the Office of Naval Research (award no. N00014ā€16ā€1ā€2477). VH was funded by European Research Council Grant No. 322814 awarded to A.M. de Roos.Animals make behavioural and reproductive decisions that maximise their lifetime reproductive success, and thus their fitness, in light of periodic and stochastic variability of the environment. Modelling the variation of an individual's energy levels formalises this tradeoff and helps to quantify the populationā€level consequences of stressors (e.g. disturbance from human activities and environmental change) that can affect behaviour or physiology. In this study, we develop a dynamic state variable model for the spatially explicit behaviour, physiology and reproduction of a female, longā€lived, migratory marine vertebrate. The model can be used to investigate the spatioā€temporal patterns of behaviour and reproduction that allow an individual to maximise its overall reproductive output. We parametrised the model for eastern North Pacific blue whales Balaenoptera musculus, and used it to predict the effects of changing environmental conditions and increasing human disturbance on the population's vital rates. In baseline conditions, the model output had high fidelity to observed energy dynamics, movement patterns and reproductive strategies. Simulated scenarios suggested that environmental changes could have severe consequences on the population's vital rates, but that individuals could tolerate high levels of anthropogenic disturbance. However, this ability depended on where, when and how often disturbance occurred. In scenarios with both environmental change and anthropogenic disturbance, synergistic interactions caused stronger effects than in isolation. In general, larger body size offered a buffer against stochasticity and disturbance, and, consequently, we predicted juveniles to be more susceptible to disturbance. We also predicted that females prioritise their own survival at the expense of the current reproductive attempt, presumably the result of their long lifespan. Our approach provides a general framework to make predictions of the cumulative and synergistic effects of human disturbance and climate change on migratory populations, which can inform effective management and conservation efforts.Publisher PDFPeer reviewe
    • ā€¦
    corecore