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The compaction step of integrated circuit design motivates associating several kinds of graphs with a collection of
non-overlapping rectangles in the plane. These graphs are intended to capture various visibility relations amongst the
rectangles in the collection. The contribution of this paper is to propose time- and cost-optimal algorithms to construct two
such graphs, namely, the dominance graph (DG, for short) and the visibility graph (VG, for short). Specifically, we show
that with a collection of n non-overlapping rectangles as input, both these structures can be constructed in 0(log n) time
using n processors in the CREW model.

Keywords: CAD, Compaction, Constraint Graph, Dominance Graph, Visibility Graph, Parallel Algorithms, Lower Bounds,
Time-Optimal Algorithms, CREW

1 INTRODUCTION

Two important design methodologies central to the
fabrication of integrated circuits are symbolic layout and
compaction. The symbolic layout involves representing a
mask layout using symbols and languages to manipulate
these symbols; compaction changes the geometry of the
topological design to produce a smaller layout while
enforcing the design rules and constraints [10, 13].
Masks used in the process of integrated circuit layout
design are usually represented by a set of rectangles in
two dimensions, with edges parallel to the axes (hence-
forth referred to as iso-oriented) 10, 11 ].
As it turns out, most of the steps in the compaction

process are simplified by using a symbolic description of
the layout. It is quite natural, therefore, to express the
compaction problem as a problem involving a collection
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of iso-oriented, non-overlapping, rectangles in the plane.
For simplicity reasons the compaction process is one-
dimensional, i.e. the components are moved in the
x-direction or y-direction only, or two-dimensional where
in a single step selected components are moved in both
directions [12, 14]. Typically, the compaction process is
based on the notion of constraint graph (CG, for short).
Each vertex of the constraint graph corresponds to a
rectangle or to a group of electrically equivalent ele-
ments; the edges of the constraint graph correspond to
the design constraints that must be satisfied by the circuit
[8, 12, 14].
However, in general the constraint graph is rather

complicated, with many extraneous edges [14]. From a
computational standpoint [5] one is motivated to inves-
tigate properties of simpler graphs that provide useful
heuristic solutions to a good number of special cases of
compaction. An important such graph is the visibility
graph (VG, for short) studied by several workers [5, 6,
12]. Consider a collection of iso-oriented, non-overlap-
ping, rectangles in the plane. Two rectangles R and R’ are
said to be visible if there exists a horizontal line
intersecting R and R’ and not intersecting any other
rectangle that lies between R and R’. The visibility graph
has the set of rectangles as its vertices, with two vertices
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34 D. BHAGAVATHI, H. GURLA, S. OLARIU, J. L. SCHWING AND J. ZHANG

joined by an edge if and only if the corresponding
rectangles are visible.

In this work we shall also define a subgraph of the
visibility graph that we refer to as the dominance graph
(DG, for short). Consider, again, a collection of iso-
oriented, non-overlapping, rectangles in the plane. We
say that a rectangle A is above rectangle B if some points
in A and B share the same x-coordinate with the point in
A having a larger y-coordinate. A rectangle A is directly
above B if A is above B and no rectangle C is such that
A is above C, and C is above B. The dominance graph of
a collection of non-overlapping rectangles is "a directed
graph whose vertices are precisely the rectangles in the
collection; two vertices u and v are linked by a directed
edge (u, v) when the rectangle corresponding to u is
directly above the rectangle corresponding to v. It is easy
to see that the notion of direct aboveness captures the
intuitive idea that for compaction purposes we only need
consider rectangles that are "neighbors" in the sense that
no other rectangles lie between them. It is not hard to see
that the dominance, visibility, and constraint graphs are
related by DG C VG C CG.

In this paper we assume the Parallel Random Access
Machine model which consists of synchronous proces-
sors, each having access to a common memory. At each
step, every processor performs the same instruction, with
a number of processors masked out. In a Concurrent
Read Exclusive Write PRAM model (CREW, for short),
several processors may simultaneously read the same
memory location, but exclusive access is used for writ-
ing. The interested reader is referred to [7] for a more
detailed discussion on the CREW model. The cost of a
parallel algorithm [7] is taken to be the product of its
running time and the number of processors used. If the
cost of a parallel algorithm matches the sequential lower
bound for the given problem, the parallel algorithm is
termed cost-optimal. A parallel algorithm is termed
time-optimal within a given computational model is no
other parallel algorithm solving the same problem runs
faster in that model.
The main contribution of this paper is to provide time-

and cost-optimal algorithms for the problems of con-
structing the dominance and visibility graphs of a col-
lection of n iso-oriented, non-overlapping, rectangles in
the plane. Our first result is to show that the problem of
constructing the dominance graph has a lower bound of
12(n log n) by reducing the ELEMENT UNIQUENESS
[4] problem to it. Next, we derive time-lower bounds for
the problems of computing the dominance and visibility
graphs in the CREW model. Specifically, we show that
any parallel algorithm solving these problems must take
f(log n) time in the CREW even if an infinite number of
processors and memory cells are used. Finally, we
propose time- and cost-optimal algorithms to construct

the dominance and visibility graphs running in 0(log n)
time and using O(n) processors in the CREW model of
computation.
The remainder of this work is organized as follows"

Section 2 presents our lower bounds; Section 3 presents
the details of our time-optimal algorithm to construct the
dominance graph; Section 4 discusses the details of the
proposed time-optimal algorithm for the visibility graph;
finally, Section 5 summarizes the results and poses some
open problems.

2 LOWER BOUNDS

The purpose of this section is to provide lower bounds
that establish both the time- and cost-optimality of our
algorithms in the CREW model of computation.
We first show that any algorithm that correctly con-

structs the domination graph of a collection of n non-
overlapping rectangles in the plane must perform at least
(n log n) operations. Our arguments rely on a well-
known lower bound for the following classic problem.

ELEMENT UNIQUENESS: Given n real numbers x1,
x2 x,,, decide whether any two of them are equal.

Proposition 2.1. [4] ELEMENT UNIQUENESS has a
lower bound of (n log n) in the algebraic tree model of
computation. [--]

Lemma 2.2. The problem of constructing the domina-
tion graph of a collection of n non-overlapping rect-
angles in the plane has a lower bound of I(n log n) in the
algebraic decision-tree model.

Proof. Assume that the input to the ELEMENT
UNIQUENESS problem is a set x1, x2 x of real
numbers. Construct a family R1, R2 Rn of n degen-
erate rectangles in the plane by letting every R be
specified by its lower-left and upper-right comers both
defined as (xi, i). In other words, every rectangle R
reduces to the point (xi, i) in the plane. Notice that by
construction the rectangles are non-overlapping. Now
consider the dominance graph corresponding to this
family of rectangles: by scanning the degrees of vertices
of this graph we find out in O(n) time whether any two
of the real numbers x1, x2 x are equal. The
conclusion follows from Proposition 2.1.

Next, we note that Schlag et al. [12] have established
a similar lower bound for the problem of constructing the
visibility graph of n rectangles in the plane. Specifically,
a variant of the following result was established in [12].
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Proposition 2.3. The problem of constructing the vis-
ibility graph of a collection of n non-overlapping rect-
angles in the plane has a lower bound of 2(n log n) in the
algebraic decision-tree model.

In fact, Proposition 2.3 can also be proved directly in
a way essentially similar to the proof of Lemma 2.2.
Our next goal is to establish a time lower bound for the

tasks of constructing the dominance and visibility graphs
in the CREW model. For this purpose, we rely on a
fundamental result of Cook et al. [3]. To make this paper
self-contained, we define the problem and state the
relevant result from [3].

OR: Given n bits b1, b2 bn, compute their logical
OR.

Proposition 2.4. [3] OR has a time lower bound of
(log n) on the CREW, regardless of the number of
processors and memory cells used.

Theorem 2.5. The problem of constructing the domi-
nance graph of a set of n non-overlapping rectangles in
the plane has a lower bound of f(log n) on the CREW,
regardless of the number of processors and memory cells
used.

Proof. To establish the lower bound, we only need show
that the solution to the dominance graph problem for n
iso-oriented, non-overlapping, rectangles in the plane
yields a solution to the OR problem. Let b 1, b2 bn be
the input to the OR problem. We construct a collection
Ro, R R of n + 1 non-overlapping rectangles. We
specify each rectangle by an ordered pair consisting of
the coordinates of its lower-left and upper-fight comers,
respectively. More precisely, we set:

Ro ((1, n + 1),(n + 2, n + 1.5));
for all (1 <-- <- n),
R ((i, n- + 1), (i + 2, n- + 1.5)), whenever
b 0;
R ((i, n- + 1), (i + 1, n- + 1.5)), whenever

bi-- 1.

(Figure illustrates this construction for the input
sequence b 0, b2 0, b3 1, b4 1, b5 0.) Clearly
the answer to the OR problem is 0 if and only if the
out-degree of the vertex corresponding to Ro is 1.
Therefore, once the dominance graph is available, one
can find the answer to OR in O(1) time. By virtue of
Proposition 2.4, any algorithm that computes the domi-
nance graph must take f(log n) time in the worst case.
This completes the proof of the theorem.

Theorem 2.6. The problem of constructing the visibility
graph of a set of n iso-oriented, non-overlapping rect-

R01

FIGURE Illustrating the lower bound for dominance graph.

angles in the plane has a lower bound of l(log n) on the
CREW, regardless of the number of processors and
memory cells used.

Proof. The claim will be established by showing that a
solution of the visibility graph problem implies a solu-
tion for OR. Let the bit string b1, b2 b,, be the input
to the OR problem. Corresponding to this input, we
construct a collection of n + 2 iso-oriented, non-
overlapping, rectangles Ro, R Rn, R+ 1. We specify
each rectangle by an ordered pair consisting of the
coordinates of its lower-left and upper-fight comers,
respectively. More precisely, we set:

Ro ((0, 0), (0.5, 2)), R,,+ ((n + 1, 0), (n + 1.5,
2)) and
for alli(1 --<i--<n)
R ((i, 0), (i + 0.5, 3)), whenever b 1, and
R ((i, 0), (i + 0.5, 1)), whenever b O.

(Figure 2 illustrates this construction for the input
sequence b 0, b2 0, b3 1, b4 1, b5 0.) Clearly
the solution to the OR problem is 0 if and only if Ro and

Rn+ are visible. Thus, once the visibility graph is
available, one can find the answer to OR in O(1) time.
Therefore, Proposition 2.4 guarantees that any algorithm
that constructs the visibility graph must take 12(log n)
time in the worst case.

FIGURE 2 Illustrating the lower bound for visibility graph.
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3 CONSTRUCTING THE DOMINANCE
GRAPH

The purpose of this section is to exhibit a time- and
cost-optimal algorithm to construct the dominance graph
of a set of n iso-oriented, non-overlapping, rectangles R1,

Re R in the plane. For convenience, we assume that
every rectangle R is represented by a set of four edges,
R { li, ri, ti, bi} with and r standing for the left and
right vertical edges respectively; similarly, we let and b
denote the top and bottom horizontal edges, respectively.
Every edge is represented by its two endpoints. To avoid
tedious and inconsequential housekeeping details, we
assume that all rectangles have distinct x and y coordi-
nates.
Draw from each endpoint of a horizontal edge (resp.

bi) (1 < <-- n) upward (resp. downward) pointing
half-lines. Each of these half-lines terminates when it
encounters the horizontal edge of another rectangle, or
continues to infinity. It is customary to refer to these
half-lines as trapezoidal lines. What results is a partition
of the plane into rectangular regions (bounded or un-
bounded). Such a decomposition is termed a trapezoidal
decomposition (see Figure 3). Furthermore, it is fairly
easy to see that the number of trapezoids in the decom-
position is O(n).

Note that every bounded trapezoid T has its horizontal
edges determined by the horizontal edges of two rect-

angles in our collection; the vertical edges are either
trapezoidal lines or combinations of trapezoidal lines and
the vertical edge of some rectangle (refer to Figure 3 for
an illustration). As we are about to point out, the
trapezoidal decomposition is closely related to the notion
of direct aboveness.

Lemma 3.1. Let R and R be rectangles such that b has
a larger y-coordinate than tu. Rv is directly above R if,
and only if, there exists a trapezoid determined by bv, tu
and two trapezoidal lines originating at the endpoints of
b and u.

Proof. To begin, note that if R is directly above R then
there exists a trapezoid satisfying the requirements of the
lemma (refer to Figure 4).

Conversely, suppose that the trapezoidal region con-
sisting of bv, tu and two trapezoidal lines originating at
the endpoints of bv and exists. It is easy to see that no
other rectangle in the collection can be between R and
Ru, and the conclusion follows. 7q

Lemma 3.1 motivates the following approach to con-
structing the dominance graph. Begin by performing the
trapezoidal decomposition of the plane and assign one
processor to each corner of every rectangle in the
collection. Every processor is responsible for detecting a
trapezoid satisfying the requirements of Lemma 3.1. The
dominance graph DG will be returned by its adjacency
lists structure: that is, for every vertex u of DG we return
a linked list that contains all the vertices v for which (u,
v) is an edge in DG. The details are spelled out as
follows.

Algorithm Construct_Dominance_Graph; {Input: a
collection R1, Re Rn of n iso-oriented non-overlap-
ping rectangles in the plane;
Output: the corresponding dominance graph DG repre-
sented by its adjacency lists; }

Step 1. Sort all the edges (1 < -< n) in increasing
order of their x-coordinates;

R R

FIGURE 3 A trapezoidal decomposition. FIGURE 4 The trapezoid T satisfies the conditions of Lemma 3.1.
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Step 2. Divide the plane into trapezoids by using the
optimal parallel trapezoidal decomposition of [1];

Step 3. Assign one processor to each corner of every
rectangle in the collection; for (1 -< -< n) let P1 i, P2i,
P3i, P4 be the processors assigned to R1, with P1
assigned to the upper-left corner and proceeding counter-
clockwise (refer to Figure 5);

Step 4. For all i, j (1 -< -< n; 1 -< j -< 4) in parallel
processor eji identifies the following trapezoidal line
segments:

aj starting from the point on which eji is assigned
and pointing upwards (downwards);
cj the nearest vertical line segment to the right of aj
and parallel to aji;
bj and d the two horizontal line segments which
bound a’ and c (see Figure 5 for an illustration);

Step 5. For all i, j (1 <- <- n; <- j <- 4) processor eji
marks itself active if the rectangular region determined
by aji, bji, cji, and d satisfies the conditions of Lemma

aill
11 Cl

a2 ,_i

FIGURE 5 Illustrating Steps 3 and 4 ofConstruct_Dominance_Graph.

3.1; otherwise, pi marks itself inactive and will never be
active again;

Step 6. Every active processor pji records (s, t) in its own
memory, whenever rectangle R is above rectangle Rt;

Step 7. Sort the ordered pairs (s, t) produced in Step 6 by
their first component;

Step 8. In the sorted list mark the first element in every
group of ordered pairs having the same first component;
what results are the adjacency lists of the dominance
graph.
To summarize our findings we state the following

result.

Theorem 3.2. The dominance graph corresponding to a
collection of n iso-oriented, non-overlapping, rectangles
in the plane can be constructed in O(log n) time using
O(n) processors in the CREW. Furthermore, this is both
time- and cost-optimal in this model of computation.

Proof. The correctness follows directly from Lemma
3.1. We turn our attention to the complexity. First, we
note that since no write conflicts arise, the computation
can be performed in the CREW model.

Notice that Step takes O(log n) time using O(n)
processors if we use Cole’s sorting algorithm [5]. Next,
Step 2 uses the algorithm in running in O(log n) time
and using O(n) processors in the CREW model. Step 3
involves a simple assignment operation, and thus re-
quires O(1) time. Note that in Step 4 every processor p.i

takes O(1) time to determine the lines aji, bi, Cjl, and dj’.
To clarify this last point, note that aj’, b’, c, and d
belong to the same trapezoid in the collection and so the
search of Step 4 can be performed in constant time.
Furthermore, once this information is known, pi marks
itself active only if these lines satisfy the conditions of
Lemma 3.1: this is done in O(1) time; Further, Step 7 can
be implemented in O(log n) time with O(n) processors by
using Cole’s sorting algorithm. Finally, Step 8 can be
implemented in O(1) time with O(n) processors in the
obvious way. By Lemma 2.2 our algorithm is cost-
optimal; by Theorem 2.5 the algorithm is also time-
optimal. This completes the proof of Theorem 3.2. []

4 CONSTRUCTING THE VISIBILITY
GRAPH

Consider, again, a collection {R1, R2 R,,} of n
iso-oriented, non-overlapping, rectangles in the plane.
For the purpose of constructing the visibility graph, it is
convenient to abstract rectangles as vertical line seg-
ments as described below. In this context, the compaction
is referred to as "stick" compaction [5, 14].
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Specifically, from the collection we obtain a collection
Z= {sl, s2 sn} of n disjoint vertical line segments in
the plane, such that segment s corresponds to the
leftmost vertical edge of rectangle Ri. We say that a pair
si, sy of such segments is a visible pair (or, simply, that
they see each other [5]) if there exists a horizontal line
intersecting si and sy and not intersecting any other line
segment sk that lies between s and s (see Figure 6). It is
not hard to see that the visibility graph of the original set
of rectangles is precisely the visibility graph of the
resulting collection of vertical line segments.

For every such line segment si (1 <- <-- n) we let (xi,

ti) and (xi, bi) denote its top and bottom endpoints,
respectively. To avoid inconsequential and tedious
housekeeping details, we assume that all segments have
distinct x and y coordinates. As noted in [5, 12] this can
always be done without any loss of generality.
Draw from each endpoint of every segment right and

left-pointing half-lines. Each of these half-lines termi-
nates when it encounters another vertical segment in the
collection, or continues to infinity. What results is a
trapezoidal decomposition of the plane (refer to Figure
7).

It is easy to confirm that every bounded trapezoid T
has its horizontal edges determined by trapezoidal lines;
the vertical edges correspond to sub-segments of two

+ m mmm

FIGURE 7 The trapezoidal decomposition of line segments.

FIGURE 6 A collection of vertical line segments; segments and sj
see each other.

vertical segments in our collection. As we are about to
point out, the trapezoidal decomposition is closely re-
lated to the notion of visibility among vertical segments
in the plane.

Lemma 4.1. Let s and s be arbitrary vertical segments.
The segments s and s see each other if, and only if, there
exists a trapezoid T whose vertical edges are sub-
segments of s and s.
Proof. To begin, note that if s and sy see each other, then
the existence of a trapezoid satisfying the requirements
of the lemma follows directly from the definition. Con-
versely, suppose that there exists a trapezoid T satisfying
the conditions of the lemma. It is easy to see that no other
vertical line segment can be between s and s, and the
conclusion follows.

Lemma 4.1 motivates the following approach to con-
structing the set of all visible pairs: perform the trapezoi-
dal decomposition of the plane and then assign one
processor to each corner of every trapezoid in the
decomposition. Every processor is responsible for detect-
ing whether the trapezoid it has been assigned to is
bounded i.e. satisfies the requirements of Lemma 4.1.
The visibility graph will be returned by its adjacency
lists. The details are spelled out as follows.
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Algorithm Construct_Visibility_Graph;
(Input: a collection S {s, s2 sn} of n vertical line
segments in the plane;
Output: the corresponding visibility graph represented by
adjacency lists; }

Step 1. Sort all the vertical line segments in increasing
order of their x-coordinates;

Step 2. Perform a trapezoidal decomposition of the plane
by using the algorithm of [1];

Step 3. Assign one processor to each comer of every
trapezoid formed in this way; for (1 -< -< n) let Tg be
such a trapezoid and let P1 i, P2i, P3i, P4 be the processors
assigned to Ti, with Pig assigned to the upper-left comer
and proceeding counter-clockwise (see Figure 8);

Step 7. Sort the ordered pairs (p, q produced in Step 6
by their first component.

Step $. In the sorted list mark the first element in every
group of ordered pairs having the same first component;
what results are the adjacency lists of the visibility graph.
To summarize our findings we state the following

result.

Theorem 4.2. The visibility graph of a collection of n
disjoint vertical line segments in the plane can be
constructed in O(log n) time using O(n) processors in the
CREW model of computation.

Proof. The correctness follows directly from Lemma
4.1. Therefore, we turn our attention to the complexity.
First, we note that since no write conflicts arise, the
computation can be performed in the CREW model.

Step 4. For all i, j (1 < < n; 1 -< j -< 4) in parallel
processor eji identifies the following trapezoidal line
segments:

aj starting from the point on which pji is assigned
and pointing right (left);
cj the nearest trapezoidal line below aj and parallel

to. aji
b and d.i the two vertical line segments which.J
bound a and c (see Figure 8 for an illustration);

Step 5. For all i, j (1 --< <- n; 1 -< -< 4) processor pji
marks itself active if the rectangular region determined
by a/, bjg, cji, and d. is bounded (i.e. b/ and dj both.J
exist); otherwise, P/marks itself inactive and will never
be active again;

Step 6. Every active processor pi records (p, q) in its
own memory, with Sp bj and Sq di;

a

Cl

P. a2

Ti

dc2 2

FIGURE 8 Illustrating Steps 3 and 4 of Construct_Visibility_Graph.

To begin, we note that the number of trapezoids in the
decomposition is linear in the number of segments 11 ].
Step 1 takes O(log n) time using O(n) processors if we
use Cole’s sorting algorithm. Next, Step 2 uses the
algorithm in [1] running in O(log n) time and using O(n)
processors in the CREW model. Step 3 only involves
assignments and takes O(1) time. Note that in Step 4
every processor pi takes O(1) time to determine aji, bi,
cjg, and dj since the required information is stored in one
trapezoid in the decomposition; once this information is
known, pji marks itself active only if the corresponding
trapezoid is bounded: this is done in O(1) time; finally,
Steps 7 and 8 can be implemented in O(log n) time with
O(n) processors by using Cole’s sorting algorithm.

Theorem 4.2, Proposition 2.3, and Theorem 2.6 com-
bined imply the following result.

Theorem 4.3. Consider a collection of n iso-oriented,
non-overlapping, rectangles R, R2 Rn in the plane.
The corresponding visibility graph can be constructed in
O (log n time using O (n) processors in the CREW.
Furthermore, this is both time- and cost-optimal in this
model of computation.

5 CONCLUDING REMARKS

In this paper we presented time- and cost-optimal paral-
lel algorithms to construct two special kinds of graphs
motivated by, and finding applications to, the compaction
step of integrated circuit design. Specifically, we have
shown that with a family of n iso-oriented, non-overlap-
ping rectangles in the plane, both the dominance and the
visibility graphs can be constructed in O(log n) time with
O(n) processors in the CREW model of computation.
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We have also shown that these results are best possible
both with respect to the amount of work and with respect
to the running time. In fact, we have shown that the
running time of these algorithms cannot be further
reduced even if an infinite number of processors and
memory cells are available.

Both our algorithms are conceptually very simple,
relying on the trapezoidal decomposition developed in
[1]. Our algorithms are, in fact, new evidence to the
elegance and power of the trapezoidal decomposition.
We close with the obvious question: what other

compaction-related problems can be solved by using this
decomposition? This is a promising area for further
research.
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