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Time-optimal tree computations on sparse meshes:‘: 
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Received 31 July 1995: revised 8 October 1996 

Abstract 

The main goal of this work is to fathom the suitability of the mesh with multiple broadcasting 
architecture (MMB) for some tree-related computations. We view our contribution at two Icvcls: 
on the one hand, we exhibit time lower bounds for a number of tree-related problems on the 
MMB. On the other hand, we show that these lower bounds are tight by exhibiting time-optimal 
tree algorithms on the MMB. Specifically, we show that the task of encoding and/or decoding 
j?-node binary and ordered trees cannot be solved faster than 12(logn) time even if the MMB 
has an infinite number of processors. We then go on to show that this lower bound is tight. 
We also show that the task of reconstructing /I-node binary trees and ordered trees from theil 
traversals can bc performed in 0( 1) time on the same architecture. Our algorithms rely on novel 
time-optimal algorithms on sequences of parentheses that WC also develop. 

KCJJYIYHY/.S: Meshes with multiple broadcasting; Binary trees: Ordered trees: Encoding; Dccod- 
ing; Traversals; Tree reconstruction; Parentheses matching: Parallel algorithms; Time-optimal 
algorithms 

1. Introduction 

Due to its simple and regular interconnection topology the mesh is particularly well 

suited for solving various problems in image processing, pattern recognition, graph 

theory, and computer graphics. At the same time, its large diameter renders the mesh 

less effective in computing with data spread over processing elements far apart. To 

overcome this problem, the mesh architecture has been enhanced by various types of 

bus systems. Early solutions involving the addition of one or more global buses, shared 

by all processors, have been implemented on a number of massively parallel machines. 

Recently, a more powerful architecture, referred to as mesh with multiple broadcasting. 
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(MMB) has been obtained by adding one bus to every row and to every column of 

the mesh [7, 141. The MMB has been implemented in VLSI and is used in the DAP 

family of computers [14]. 

An MMB of size M x N consists of MN synchronous processors positioned on a 

rectangular array overlaid with a bus system. The processors are connected to their 

nearest neighbors and are assumed to know their own coordinates within the mesh. In 

addition, in every row of the mesh the processors are connected to a horizontal bus; 

similarly, in every column the processors are connected to a vertical bus as illustrated 

in Fig. 1. 

Processor P(i,j) is located in row i and column j, (1 < i < M; 1 d j < N), with 

P( 1,1) in the notihhwest corner of the mesh. Every processor has a constant number 

of registers of size O(log MN); in unit time, the processors perform an arithmetic or 

boolean operation, communicate with one of their neighbors using a local connection, 

broadcast a value on a bus, or read a value from a specified bus. All these operations 

involve handling at most O(logA4N) bits of information. For practical reasons, only 

one processor is allowed to broadcast on a given bus at any one time. By contrast, 

all the processors on the bus can simultaneously read the value being broadcast. In 

accord with other researchers [7, 10,141, we assume that communications along buses 

take O(1) time. Although inexact, recent experiments with the DAP and the YUPPIE 

multiprocessor array system, seem to indicate that this is a reasonable working hypoth- 

esis [lo, 141. Being of theoretical interest as well as commercially available, the MMB 

has attracted a great deal of attention [l-3,7,8,12, 141 

A PRAM [.5] consists of synchronous processors, all having unit-time access to 

a shared memory. In the CREW-PRAM, a memory location can be simultaneously 

accessed in reading but not in writing. From a theoretical point of view, an MMB 

can be perceived as a restricted version of the CREW-PRAM machine: the buses 

are nothing more than obhious concurrent read-exclusive write registers with the 

access restricted to certain sets of processors. Indeed, in the presence of p 

Fig. 1. A mesh with multiple broadcasting of size 4 x 5. 
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CREW-PRAM processors, groups of v,@ of these have concurrent read access to a 

register whose value is available for one time unit, after which it is lost. Given that 

the MMB is, in this sense, weaker than the CREW-PRAM, it is very often quite 

a challenge to design algorithms in this model that match the performance of their 

CREW-PRAM counterparts. Typically, for the same running time, the MMB uses more 

processors. 

Encoding the shape of an ordered tree is a basic step in a number of algorithms 

in integrated circuit design, automated theorem proving, and game playing [ 151. The 

common characteristic of these applications is that the information stored at the nodes 

is irrelevant, as one is only interested in detecting whether two ordered trees have the 

same “shape”. As it turns out, if we ignore the contents of the nodes of an n-node tree 

r, then the remaining shape information can be uniquely captured by a string of 2rr 

bits, referred to as the encoding of T [ 12, 151. Conversely, given a string of 212 bits, 

a number of practical applications ask to recover the unique n-node ordered tree (if 

any) corresponding to this encoding. 

The main goal of this work is to fathom the suitability of the MMB architecture for 

some tree-related computations. Our contribution is to show tight time lower bounds 

and to provide time-optimal tree algorithms on the MMB architecture. Specifically, we 

show that the following tasks can be solved in (3(logn) time on an MMB of size 

n x 17: 

l Encode an n-node binary tree into a 2n-bitstring; 

l Encode an n-node ordered tree into a 2n-bitstring; 

l Recover an n-node binary tree from its 2n-bit encoding; 

l Recover an n-node ordered tree from its 2n-bit encoding. 

We also show that the following tasks can be performed in 0( 1) time: 

l Reconstruct an n-node binary tree from its preorder and inorder traversals; 

l Reconstruct an n-node ordered tree (forest) from its preorder and postorder traversals. 

Our algorithms rely on novel time-optimal algorithms involving sequences of paren- 

theses, that we also develop. Specifically, we show that each of the tasks can be solved 

in O(logn) time: 

l finding all the matching pairs in a well-formed sequence of parentheses; 

l determining the closest enclosing pair for every matching pair in a well-formed 

sequence. 

The remainder of the paper is organized as follows. Section 2 presents our lower 

bound arguments. Section 3 discusses a number of fundamental results that are in- 

strumental in our algorithms. Section 4 discusses the details of our parentheses algo- 

rithms. Section 5 presents time-optimal algorithms for encoding and decoding binary 

and ordered trees. Section 6 addresses the problem or reconstructing binary and or- 

dered trees from their traversals. Finally, Section 7 offers concluding remarks and open 

problems. 
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2. Lower bounds 

The purpose of this section is to provide time lower bounds for a number of fun- 

damental problems that establish the optimality of our algorithms. Our lower bounds 

will be stated first in the CREW-PRAM and then extended to the MMB using a re- 

cent result of Lin et al. [9]. All our arguments for the CREW-PRAM rely directly or 

indirectly on the following fundamental result of Cook et al. [4]. 

Proposition 2.1 (Cook et al. [4]). The task of computing the logical OR of n bits 

has a time lower bound of R(logn) on the CREW-PRAM, regardless of the number 

of processors and memory cells used. 

LEFTMOST ONE: Given a sequence of n bits, find the position of the leftmost 1 

bit in the sequence. 

It is a trivial observation that OR reduces to LEFTMOST ONE in 0( 1) time. There- 

fore, Proposition 2.1 implies the following result. 

Corollary 2.2. LEFTMOST ONE has a time iower bound of R(log n) on the CREW- 

PRAM, regardless of the number of processors and memory cells used. 

To obtain lower bounds for the problems of interest to us on the MMB, we rely on 

the following recent result of Lin et al. [9]. 

Proposition 2.3 (Lin et al. [9]). Any computation that takes O(t(n)) computational 

steps on an n-processor MMB can be performed in O(t(n)) computational steps on 

an n-processor CREW-PRAM with O(n) extra memory. 

It is important to note that Proposition 2.3 guarantees that if TM(n) is the execution 

time of an algorithm for solving a given problem on an n-processor MMB, then there 

exists a CREW-PRAM algorithm to solve the same problem in Tp(n) = TM(n) time 

using n processors and O(n) extra memory. In other words, “too fast” an algorithm on 

the MMB implies “too fast” an algorithm for the CREW-PRAM. 

In the remaining part of this section the general scheme for proving lower bounds is 

as follows; given a problem A we either reduce the OR problem or the LEFTMOST 

ONE problem to A. Using the input to the OR, which is a sequence of bits bi, b2, . . . b,, 

an input to A is constructed, generally the processor which holds the bit bj, in parallel, 

generates a portion of the input for A thus taking 0( 1) time for the reduction process. 

After that there is an argument which relates the output of A to the result of OR, i.e. 

depending on the output of A we can determine in 0( 1) time the output for OR. This 

shows that the lower bound for A is logn. 

A sequence cr = ~1x2 . . .x, of parentheses is said to be well-formed if it contains the 

same number of left and right parentheses and in every prefix of 0 the number of right 
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parentheses does not exceed the number of left parentheses. Next we define the classic 

parentheses matching problem. 

MATCHING: Given a well-formed sequence D =x1x2.. .x,, of parentheses, for each 

parenthesis in 0, find its match. 

Lemma 2.4. MATCHING has u time lower bound of R(logn) on the CREW-PRAM, 

regardless qf’ the number of’ processors and memory cells used. 

Proof. We reduce OR to MATCHING. For this purpose, let the input to OR consist of 

n bits bl, b2,. ,b,. We convert this input to a sequence coci c2 . . c2,,+I of parentheses 

by writing CO = ‘(’ and cln+i = ‘)‘, and by setting for all ,j (1 <j < n): 

l cl,_1 = ‘(’ and c2,, = ‘)‘, whenever b, = 0; 

l q-l = ‘)’ and ~2; = ‘(‘, whenever bi = 1. 

It is easy to see that this construction can be performed in 0( 1) time by n CREW 

processors. Now, an easy inductive argument on the number of l’s in bl, b2,. , b,, 

shows that the sequence coci c2 . Q ,l+l is always well-formed. Furthermore, the match- 

ing pair of CO is ~2~+i if and only if the answer to the OR problem is 0. The conclusion 

follows by Proposition 2.1. 0 

One is often interested in the solution of the following problem. 

ENCLOSING PAIR: Given a well-formed sequence cr =x1x2 . .x,, of parentheses, 

for every matching pair of parentheses in U, find the closest pair of parentheses that 

encloses it. 

Lemma 2.5. ENCLOSING PAIR has a time lower bound of’fl(logn) on the CREW- 

PRAM, regardless of the number oj’processors and memor)! cells used. 

Proof. We reduce LEFTMOST ONE to ENCLOSING PAIR. Assume that the input 

to LEFTMOST ONE is 61, b2,. . , b,. Construct a sequence cicl . . ~4,,+2 of parentheses 

as follows: 

l c~,~+I = ‘(‘; c2,,+2 = ‘)‘; furthermore, for all j (1 < j < n) set. 

a ~‘2+2.,+i = ‘(‘; ~-_2~+2 = ‘)‘; c2n+2j+l = ‘(‘; c2+2jf2 = ‘)‘, whenever bj = 0; 

l c~,,__z,+I = ‘(‘; c2n_2j+2 = ‘(‘; c2n+2j-l = ‘)‘; c2nt2j+2 = ‘)‘, whenever b, = 1. 

It is easy to see that this construction can be performed in 0( 1) time by n CREW 

processors. Moreover, our construction guarantees that the sequence is well-formed 

and that every parenthesis knows its match; in particular, c~~+i and CZ,,+Z are a match- 

ing pair. Furthermore, the closest enclosing parentheses for the pair (~+i. ~~-2) is 

(Q__zP+~, c~,~+2k+i ), if and only if k is the position of the leftmost 1 in hi, b?, , b,,. 

Now the conclusion follows by Corollary 2.2. 0 

A binary tree T is either empty or consists of a root and two disjoint binary trees, 

called the left subtree, TL and the right subtree, TR. For later reference, we assume that 

every node in a binary tree maintains pointers to its left and right children. In many 
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Fig. 2. A binary tree and its encoding. 

contexts, it is desirable to encode the shape of T as succinctly as possible. In this 

paper, we are interested in one such encoding scheme recursively defined as follows:’ 

if T is empty, 

la(T~)Oo( TR) otherwise. 
(1) 

Note that under (1) an arbitrary n-node binary tree is encoded into 2n bits, as illustrated 

in Fig. 2. 

BINARY TREE ENCODING: Given an n-node binary tree, find its encoding. 

Lemma 2.6. BINARY TREE ENCODING has a time lower bound of R(logn) on 

the CREW-PRAM, regardless of the number of processors and memory cells used. 

Proof. We reduce OR to BINARY TREE ENCODING. Assume that 61, bz,. . . , b, is 

an arbitrary input to OR. We assume an extra bit b,+l with value 0 (so as not to 

change the answer). Convert this bit sequence to an n + l-node binary tree T with 

nodes 1,2,3,. . , y1+ 1. Specifically, we associate with every bit b,, (1 < j 6 n + 1) the 

node j of T, such that 

l 1 is the root of T; 

l for every i, (1 < i < n), node i+ 1 is the unique child of i. Moreover, i+ 1 is the left 

child of i if b; = 1 and the right child otherwise. An illustration of the construction 

if featured in Fig. 3. 

It is easy to see that this construction can be performed in 0( 1) time by n CREW 

processors. To see this notice that each processor P( 1, i) holding the bit bi creates the 

node i of T and sets its child (left or the right child depends on the value of b,j) 

pointer to node i + 1 which is stored in processor P( 1, i + 1). Let a(T) = ci c2 . . c2,,+2 

be the 2n + 2-bit encoding of T. We claim that 

~+i = 1 if and only if the answer to OR is 0. (2) 

To justify (2) observe that if all the bits in the string bl, bz,. . . , b,_l are 0 then, by 

our construction and (l), combined, Q,+, = 1. Conversely, let j be the position of the 

leftmost 1 in bl, b2,. , b,_l. Clearly, (1) guarantees that the encoding of the subtree 

rooted at j is la(Tj+l )0 and, since by construction node j has no right child, this is 

‘This scheme is similar to the one reported in [ 151 
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bit sequence cl 10 0 1000 
position 12 3 4 5678 

resulting binary tree 

encoding of the binary tree 

Fig. 3. Illustrating the construction in Lemma 2.6 

a suffix of the encoding of T. Since a( T,,, ) must end in a 0, it follows that Q,~_ r = 0 

and the conclusion follows. 

By virtue of (2), once the encoding is available, one can determine in 0( 1) time 

the answer to OR. Now the conclusion follows by Proposition 2.1. 0 

The converse operation of recovering a binary tree from its encoding is of interest 

in a number of practical applications. We state the problem as follows. 

BINARY TREE DECODING: Recover an n-node binary tree from its encoding. 

Lemma 2.7. BINARY TREE DECODING bus u time Imiser bound c?f’ Q(log n) on 

thr CREW-PRAM, reyardhs of the number qf procc.sssn~~ rend memor-y cvlls used. 

Proof. We reduce OR to BINARY TREE DECODING. Let hr) bz, . b,, be an arbi- 

trary input to OR. We add a new bit bo with a value 0 (this will not change the OR of 

the bits). Construct a well-formed sequence of parentheses, cacr c2,,+3 as described 

below: 

. L’0 = ‘(‘; or{+3 = ‘)‘. 

l c~,.+ 1 = ‘(‘; cl,+? = ‘)‘, whenever bi = 0; 

l c2, l 1 = ‘)‘and c2;+2 = ‘(‘, whenever hi = 1 and hi_, = 0; 

l q- I = ‘(‘and ~2; = ‘)‘, whenever b, = 1 and b,_l = 1. 

It is easy to see that this construction can be performed in 0( 1) time by n CREW 

processors, and that the resulting sequence is well-formed. Consequently, interpreting 
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every ‘(’ as a 1 and every ‘)’ as a 0, cacr ~2,,+3 is the encoding of a binary tree T 

with n + 2 nodes. Notice that root(T) has two children if and only if the OR of the 

input sequence is 1. Therefore, once the decoding is available, one can solve the OR 

problem in 0( 1) time. Now Proposition 2.1 implies that any algorithm that performs 

the decoding must take R(logn) time. 0 

An ordered tree T is either empty or it contains a root and disjoint ordered subtrees, 

Ti, T,, , Tk. For later reference, we assume that ordered trees are specified by parent 

pointers. The encoding o(T) of T is defined as follows: 

if T is empty 

o( Tk)O otherwise. (3) 

Note that the encoding of an n-node ordered tree is a sequence of 2n bits. Refer to 

Fig. 4 for an example. 

Next, we are interested in the following problem. 

ORDERED TREE ENCODING: Given an ordered tree, find its encoding. 

Lemma 2.8. ORDERED TREE ENCODING has a time lower bound of R(logn) 

on the CREW-PRAM, regardless of the number of processors used. 

Proof. We reduce OR to ORDERED TREE ENCODING. Let bl, b2, . . . , b, be an ar- 

bitrary input to OR. We add two bits bo = 1 and b,+l = 0. The new sequence bo, bl, . . . , 

b n+l is converted to an ordered tree T on nodes (0, 1, . , n + l} as follows: 

l node 0 is the root; 

l for all i, (1 <i < n + 1 ), the parent of node i is 0 if bi = 0 and n + 1 otherwise. 

The reader is refered to Fig. 5 for an illustration of this construction. 

It is easy to see that this construction can be performed in 0( 1) time by n CREW 

processors. Let cl c2 . . . czn+4 be the 2(n + 2)-bit encoding of 7’. Observe that 

czn+2 = 1 if and only if the OR of the input sequence is 0, (4) 

To justify (4), note that if all bits in bl, bz,. , b, are 0 then, by (3) and our con- 

struction, cl,,+2 = 1. Conversely, if there exist l’s in the sequence 61, bz,. . , b,, then 

the node of T corresponding to b,+l is not a leaf. Therefore, (3) guarantees that 

qn+2 = ~2~+3 = czn+4 = 0 and (4) follows. 

11101010011000 

A 
llolo~ t""" 

10 10 10 10 

Fig. 4. An ordered tree and its encoding. 
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bit sequence 0 10 0 1000 
position 12 3 4 5678 

new sequence 10 10 0 10000 
position 0 12 3 4 56789 

resulting ordered tree 

encoding of ordered tree 

11010101010101101q00 

Fig. 5. Illustrating the construction in Lemma 2.8 

Now (4) guarantees that the answer to OR can be obtained in 0( 1) time, once the 

encoding is available. Therefore, by Proposition 2.1, the encoding algorithm must take 

0(logn) time. 17 

The converse operation requires recovering an ordered tree from its encoding. Speci- 

fically, the tree is assumed specified in parent pointer representation. We state the 

problem as follows. 

ORDERED TREE DECODING: Recover an ordered tree from its encoding. 

Lemma 2.9. ORDERED TREE DECODING has a time lower bound qf’ n(logn) 

on the CREW-PRAM, regardless of the number of processors used. 

Proof. We reduce ENCLOSING PAIR to ORDERED TREE DECODING. Let the in- 

put to ENCLOSING PAIR be ~1~2 .s2,!. Augment this sequence with SO = ‘(’ and 

s~,+I = ‘)‘. Thus, interpreting every ‘(’ as a 1 and every ‘)’ as a 0 we obtain the 

valid encoding of some ordered tree T under (2). Now, consider any algorithm that 

correctly recovers T from the encoding above. It is easy to see that the setting of 

parent pointers gives exactly the solution to the ENCLOSING PAIR problem for the 

augmented sequence. The conclusion follows from Lemma 2.5. 0 
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Now Proposition 2.3 together with Lemmas 2.4-2.9 imply the following result. 

Theorem 2.10. MATCHING, ENCLOSING PAIR, BINARY TREE ENCODING, 

BINARY TREE DECODING, ORDERED TREE ENCODING, and ORDERED 

TREE DECODING have a lower bound of Q(log n) on an MMB of size n x n. 

3. Basics 

The purpose of this section is to review a number of fundamental results for the 

MMB that will be instrumental in the design of our algorithms. 

The problem of list ranking is to determine the rank of every element in a given list, 

stored as an unordered array, that is, the number of elements following it in the list. 

Recently, Olariu et al. [12] have proposed a time-optimal algorithm for list ranking on 

MMB’s. 

Proposition 3.1 (Olariu et al. [12]). The task of ranking an n-element linked list 

stored in one row of an MMB of size n x n can be performed in O(logn) time. 

Furthermore, this is time optimal. 

The All Nearest Smaller Values problem (ANSV) is formulated as follows: given 

a sequence of n real numbers al,a2,. . . ,a,, for each ai (1 <i <n), find the nearest 

element to its left and the nearest element to its right. Recently, Olariu et al. [12] have 

proposed a time-optimal algorithm for the ANSV problem. 

Proposition 3.2 (Olariu et al. [I 11). Any instance of size n of the ANSV problem 

can be solved in O(logn) time on an MMB of size n x n. Furthermore, this is time- 

optimal. 

The prefix sums problem is a key ingredient in many parallel algorithms and is 

stated as follows: given a sequence al, a2,. . . , a, of items, compute all the sums of the 

form al,al fa2,al +a2 +a3,...,al +a2 +...+a,. 

Proposition 3.3 (Kumar and Raghavendra [7], and Olariu et al. [ 121). The prefix sums 

(also maxima or minima) of a sequence of n real numbers stored in one row of an 

MMB of size n x n can be computed in O(logn) time. Furthermore, this is time- 

optimal. 

Merging two sorted sequences is one of the fundamental operations in computer 

science. Recently, Olariu et al. [12] have proposed a constant time algorithm to merge 

two sorted sequences of total length n stored in one row of an MMB of size n x n. 

Proposition 3.4 (Olariu et al. [12]). Let SI =(al,a2,. . .,a,) and S2=(b,,b2 ,..., b,), 

with r + s =n, be sorted sequences stored in one row of an A4A4B of size n x n, 



D. Bl~~~crcatl~i et ul. I Discrete Applitvl Matlwmtic~s 77 (1997) 201-220 211 

Mith P( 1, i) holding a,, ( 1 <i < r) and P( 1, Y + i) holding h,. ( 1 <i <s). SI ud S2 um 

he meryed in 0( 1) time. 

Recently, the simple merging algorithm of Proposition 3.4 was used to derive a 

time-optimal sorting algorithm for MMBs [ 121. 

Proposition 3.5 (Olariu et al. [12]). A n n-elment .sequenct~ of itrms jiiom u tolallj~ 

o~dtw~~ unizrrse stored one item per processor in the first ro\v of’ un MMB of’ .sizcJ 

M x n CUII he sorted in O(log n) time. Furthrrmorr. this is time-op timd. 

4. Time-optimal parentheses algorithms 

The purpose of this section is to present two time-optimal algorithms involving 

sequences of parentheses on an MMB of size n x n. In addition to being interesting in 

their own right, these algorithms are instrumental in our subsequent tree algorithms. 

Consider a sequence 0 =xIxz . . x,, of parentheses stored one item per processor 

in the first row of an MMB of size n x IZ, with ok, (1 < k d n), stored by P( I, k). 

Assuming that the sequence is well-formed, we present an algorithm to find all the 

matching pairs. The idea is as follows. First, we compute a sequence M‘I, I\‘:, . IV,, 

obtained from (T by setting \+‘I =0 and by defining bi’/;, (2 < k < I?), as follows: 

1 if both .x/;&l and XL are left parentheses; 

$$‘A = - 1 if both XL_1 and .yh are right parentheses; 

0 otherwise. 

We now compute the prefix sums of ~‘1, ~2,. . ~a,, and let the result be el, el, _. r,,. 

By Proposition 3.3, this operation is performed in O(logn) time. It is easy to see that 

left and right parentheses x, and Xj are a matching pair if and only if X, is the first 

right parenthesis to the right of x, for which ei = c,. 

Further, with each parenthesis _xh, (1 < k < n), we associate the tuple (eh.li). On the 

set of these tuples we define a binary relation -X by setting 

(e,, i> 4 (e,,.d whenever (e, cc’/) or [(e,=e,) and (i<,j)]. 

It is an easy exercise to show that -X is a linear order. Now, sort the sequence 

(el, I).. ,(r,,,n) in increasing order of 4. By Proposition 3.5, sorting the ordered 

pairs can be done in O(logn) time. The key observation is that, as a result of sorting, 

the matching pairs occur next to one another. For a worked example the reader is 

referred to Fig. 6. To summarize our findings we state the following result. 

Theorem 4.1. Given a \vell-formed .srquence of 11 purrnthrses us input, all matching 

pairs can he .fbund in O(log n) time on un MMB of’ .six n x n. Furthermore. this is 

time-optimul. Cl 
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‘1 yi 0 1 ()I() 
5 6 7 8 9 10 11 12 

the w sequence: 

0 1 1 0 0 0 -1 0 0 -10 0 

the prefix sums: 

012222111000 

the tuple sequence: 

(0,l) (1,2) (2,3) (2,4) (2,s) (2,6) (1,7) (~8) (~9) (0,~ (0,ll) (0,12) 

same sequence sorted : 

(O,*) (0910) (0911) (0,12) (1,2) (1,7) (1,8) (1,9) (2,3) (2,4) (2,s) (2,6) 

the matching pairs: 

1 - 10, 11 - 12, 2 - 7, 8 - 9, 3 - 4, 5 - 6 

Fig. 6. Illustrating the parentheses matching algorithm 

( (0 () ) ( ) ) (1 
1 2 3 4 5 6 7 8 9 10 11 12 

the matching pairs: 

1 - 10, 11 - 12, 2 - 7, 8 - 9, 3 - 4, 5 - 6 

the p sequence: 

10 7 4 3 6 5 2 9 8 1 12 11 

the solution to the ANLV problem: 

013-2--1--0- 

Fig. 7. Illustrating the solution to the ENCLOSING PAIR problem. 

Next, we are interested in a time-optimal solution to the ENCLOSING PAIR problem 

stated in Section 2. Consider a well-formed sequence ~=XIX~ . . .x, of parentheses, 

stored one item per processor in the first row of the mesh. The details of the algorithm 

follow. For a worked example the reader is referred to Fig. 7 

Step 1. Find the match of every parenthesis in o; every processor P( 1, i) stores in 

a local variable the position j of the match Xj of xi. 

Step 2. Solve the corresponding instance of the ANSV problem. 

It is not hard to see that at the end of Step 2 every processor knows the identity 

of the closest enclosing pair. By Proposition 3.2 and Theorem 4.1, the running time 

of this simple algorithm is bounded by O(log n). By Theorem 2.10, this is the best 

possible on this architecture. Thus, we have proved the following result. 



5. Encoding and decoding trees 

The purpose of this section is to show that the task of encoding n-node binary and 

ordered trees into a 2n-bitstring can be carried out in O(logn) time on an MMB of 

size t? x tz. By virtue of Theorem 2. IO, this is time-optimal. 

Consider an n-node binary tree T with left and right subtrees r, and r,, respectively. 

We assume that the nodes of T are stored, one item per processor, in the first row of an 

MMB of size tt x n. First, we show how to associate with 7’ the unique encoding n(T) 

defined in (1). Our encoding algorithm can be seen as a variant of the classic Euler- 

tour technique [5]. We proceed as follows. Replace every node LI of T by 3 copies, 

l/’ , II’, and 11~. If II has no left child, then set link(u’ ) - L?, else if r is the left child 

of II. set link(tr’ ) + 11’ and link(c3) + z?. Similarly, if u has no right child, then set 

link(u’ ) + ui else if M’ is the right child of ZI then set link( z? ) - \I.’ and link( 1t,3 ) -J. 

It is worth noting that the processor associated with node II can perform the pointer 

assignments in 0( 1) time. What results is a linked list starting at roof(T)’ and ending 

at ~oot( T)‘, with every edge of T traversed exactly once in each direction. It is easy 

to confirm that the total length of the linked list is O(17). Finally, assign to every II’ a 

I, to every II’ a 0 and delete all elements of the form u3. It is now an easy matter to 

show that what remains represents the encoding of T specified in (I ). 

The correctness of this simple algorithm being easy to see, we turn to the complexity. 

Computing the Euler tour amounts to setting pointers. Since all the information is 

available locally, this step takes 0( 1) time. The task of eliminating every node of the 

form U’ can be reduced to list ranking, prefix computation, and compaction in the 

obvious way. By virtue of Propositions 3.1 and 3.3 these tasks can be performed in 

O(logn) time. By Theorem 2.10, this is the best possible. Consequently, we have the 

following result. 

It is worth noting here that the encoding algorithm described above is quite general 

and can be used for other purposes as well. For example, the preorder-imrder traversal 

of T is obtained by replacing for every node 14 of T, II’ and II’ by the label of II (see 

[ 131 for details). We will further discuss properties of the preorder-inorder traversal in 

the context of reconstructing binary trees from their preorder and inorder traversals in 

Section 6. 

Our encoding algorithm for ordered trees is very similar to the one described for 

binary trees. Consider an n-node ordered tree T. It is well-known [I I] that for the 
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purpose of getting the encoding (3) of T we only need to convert T into a binary 

tree BT as in [6] and then to encode BT using (1). It is easy to confirm that the 

resulting encoding is exactly the one defined in (3). The conversion of T into BT can 

be performed in 0( 1) time since it amounts to resetting pointers only. By Theorem 

5.1, the encoding of BT takes O(logn) time. By Theorem 2.10 this is the best possible. 

Consequently, we have the following result. 

Theorem 5.2. The task of encoding an n-node ordered tree can be performed in 

O(log n) time on an A4MB of size n x n. Furthermore, this is time-optimal. 

Before addressing the task of recovering binary and ordered trees from their encod- 

ings, we introduce some notation and review a few technical results. Let T be a binary 

tree and let v be a node of T. We let T” stand for the subtree of T rooted at v. A 

bitstring r is termed feasible if it contains the same number of O’s and I’s and in 

every prefix the number of O’s does not exceed the number of 1 ‘s. Recently, Olariu 

et al. [ 1 l] have shown that every feasible bitstring is the encoding of some binary tree. 

For later reference, we state the following technical result [ 111. 

Proposition 5.3. A nonempty bitstring z is feasible if and only if for every 1 in z 

there is a unique matching 0 such that z can be written as 71 lr~Oz~, with both 72 

and ~1~3 jkasible. 

Proposition 5.3 motivates us to associate with every 1 and its matching 0, a node v 

in T. The following simple observation [ 1 I] will justify our decoding procedure. 

Observation 5.4. The corresponding decomposition of z as zt 1~~0~3 has the property 

that o(Ti)= ~2, and a(T{) is a prefix of ~3. 

Observation 5.4 motivates our algorithm for recovering a binary tree from its en- 

coding. Let r be a feasible bitstring. For every 1 in z we find the unique matching 0 

guaranteed by Proposition 5.3. The corresponding (1 ,O) pair is associated with a node 

v in the binary tree T corresponding to r. We then compute the left and right children 

of v. The details of the algorithm are spelled out as follows. Begin by ranking the l’s 

of r and use the ranks as indices in T. For every 1, find its unique matching 0. Let vi 

be the node of T corresponding to the 1 of rank i and to its matching 0; let pi and 

qi denote the positions in r of the 1 of rank i and that of its matching 0, respectively. 

The processor in charge of vi sets pointers as follows: 

l left(vj) + nil in case qi = pi+l, and lcft(ui) + vi+1 otherwise; 

l right(vi) + Vj if pj = q, + 1, and nil otherwise. 

The correctness follows immediately from Proposition 5.3 and Observation 5.4. 

Therefore, we turn to the complexity. Note that to rank all the l’s we need to compute 

their prefix sum. By Proposition 3.3, this task can be performed in O(log n) time. 
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By Theorem 4.2, the matching takes O(logn) time. Finally, the setting of pointers can 

be done in 0( 1) time. Thus, we have the following result. 

Theorem 5.5. The tusk of recoueriny un n-node hinur?, tree ,ftiom its encoding tukcs 

O(log n) time on un MMB of size n x n. Furthermore, this is time-optimul. 

The task of recovering an n-node ordered tree T from its 2n-bit encoding is similar. 

We begin by perceiving the encoding of T as the encoding of a binary tree BT. Once, 

this tree has been recovered as we just described, we proceed to convert BT to T 

using the classic ordered-to-binary conversion [6]. As it turns out, this latter task can 

be carried out in O(logn) time using the sorting algorithm of Proposition 3.5. Due to 

space limitations the details are omitted. 

Theorem 5.6. The tusk of recoceriny an n-node ordered tree ji.om its 2n-bit encoding 

can be peyftirmed in O(log n) time on un MMB of size n x II. Furthermore, this is 

time-optimul. 

6. Reconstructing trees from their traversals 

The purpose of this section is to present 0( 1) time algorithms for reconstructing 

binary and ordered trees from their traversals. It is well-known that a binary tree can 

be reconstructed from its inorder traversal along with either its preorder or its postorder 

traversal [6]. Our goal is to show that this task can be performed in 0( 1) time on the 

MMB. The main idea of our algorithm is borrowed from Olariu et al. [13], where the 

reconstruction process was reduced to that of merging two sorted sequences. 

Let T be an n-node binary tree. For simplicity, we assume that the nodes of 

T are {1,2 ,..., n}. Let CI,Q ,..., c, and dl,dz.. , d, be the preorder and inorder 

traversals of T, respectively. We may think of cI,c2,. ,c,, as 1,2,. . ,n, the case 

where ~1, ~2,. . , c, is a permutation of 1,2,. . ,n reducing easily to this case [ 131. In 

preparation for merging, we construct two sequences of triples. The first sequence is 

(l,jl,cl),(l,j2,c~) ,..., (l,j,,,c,) such that dj,=c,. (i=1,2 ,..., n). In other words, the 

second coordinate j, of a generic triple represents the position of c, in the inorder se- 

quence d 1. d2,. , d,. The second sequence consists of the triples (2,1, dl ), (2.2, a’?). , 

(2,n,d,). Denote by n the set of triples 

and define a binary relation + on n as follows: for arbitrary triples (a,fi,;‘) and 

(a’, p’,~‘) in fl we have: 

Rule 1. ((a= l)r\(a’= 1)) + (((a,b,r) + (cc’,/Y,r’)) ti (;‘<?;‘)); 

Rule 2. ((s(=2) A (~“2)) + (((cx,~,;‘) + (cc’,/Y.;~‘)) ti (b <: fi’)); 

Rule 3. ((~=l)A(x’=2))+(((~,fi,j’) <(~‘,fl’,r’))-((P < b’)V(;t<j.‘))). 
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In view of the rather forbidding aspect of Rules l-3, an explanation is in order. First, 

note that Rules 1 and 2 confirm that with respect to the relation -X both sequences 

(l,j1,~1),(l,j2,c2),...,(l,j,,c,,) and (2,l,d1),(2,2,d2),...,(2,n,d,) arc sorted. Intui- 
tively, Rule 3 specifies that in the preorder-inorder traversal any pair of distinct labels 

u and v must occur in the order ‘...u...v...v...u...‘or ‘...u...u...u...v... [13]. 

Consider the sequence el , e2,. . . , e2,, obtained by extracting the third coordinate of 

the triples in the sequence resulting from merging the two sequences above. As argued 

in [ 131, the sequence el, e2,. . . , e2,, is the preorder-inorder traversal of T. 

Let ci = 1, c2 = 2,. . . , c,, = n and di, d2,. , d, be the preorder and inorder traversals 

of a binary tree. We assume that these sequences are stored in the first row of an 

MMB of size n x 2n in left to right order, with the c;‘s stored to the left of the d;‘s. It 

is easy to modify the algorithm to work on a mesh of size n x n. To construct the sets 

of triples discussed above, every processor storing c; needs to determine the position 

of the second copy of ci in the inorder traversal. Notice that every processor storing a 

d,i can construct the corresponding triple without needing any further information. The 

details follow. 

Step 1. Begin by replicating the contents of the first row throughout the mesh. This 

is done by tasking every processor P(l,i) to broadcasts the item it stores on the bus 

in its own column. Every processor reads the bus and stores the value broadcast. 

Step 2. Every processor P(i, i), (1 < i < n), broadcasts ci on the bus in row i. The 

unique processor storing the second copy of label c, will inform P(i,i) of its position 

in the inorder sequence. A simple data movement now sends this information to P( 1, i). 

Clearly, at the end of Step 2, every processor in the first row of the mesh can construct 

the corresponding triple. 

Step 3. Merge the two sequences of triples using Proposition 3.4 and store the result 

in the first row of the mesh. Finally, every processor retains the third coordinate of the 

triple it receives by merging. For an example of how this algorithm works the reader 

is referred to Fig. 8. 

The correctness of the algorithm is easy to see. Since all steps take 0( 1) time, we 

have proved the following result. 

Lemma 6.1. Given the preorder und inorder traversuls of un n-node binary tree, the 

corresponding preorder-inorder truversul can be constructed in 0( 1) time on un MA4B 

of size n X n. 

Our next goal is to show that once the preorder-inorder traversal ei, e2,. . . , ezn is 

available, the corresponding binary tree can be reconstructed in 0( 1) time. Recall, that 

every label of a node in T occurs twice in the preorder-inorder traversal. Furthermore, 

by virtue of Step 2 above, the first copy of a label knows the position of its duplicate, 

and vice versa. 

We associate a node u with every pair of identical labels in ei, e2,. . . , ez,,. Let ei 

and ei be the first and second copy of a given label. The processor holding ei assigns 

children pointers as follows: 
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1 

A 
Preorder Traversal: 1, 2, 3, 4, 5, 6 

2 4 Inorder Traversal: 3, 2, 1, 5, 4, 6 

3 5 

Sequence 1: (1,3,1~,~1,2,2~,~1,1,3~,(1,~,4~,~1,4,~~,~1,6,6~ 

Sequence 2: (2,1,3),(2,2,2),(2,3,1),(2,4,5),(2,5,4),(2,6,6) 

Merged Sequence: (113,1),(1,2,2),(1,1,3),(2,1,3),(2,2,2),(2,3,1) 

(1,5,4),(1,4,5),(2,4,5),(2,5,4),(1,6,6),(2,6,6) 

Preorder-horder Traversal: 1, 2, 3, 3, 2, 1, 4, 5, 5, 4, 6, 6 

Fig. 8. Illustrating the reconstruction of a binary tree. 

l if e,_l is the first copy of a label C, then left(cr) + 1‘; otherwise, left(u) t nil; 

l if e,,t is the first copy of a label n, then right(c;) + n’; otherwise, right(t,,) + nil. 

The setting of pointers takes 0( 1) time. Therefore, Lemma 6.1 implies the following 

result. 

An ordered tree is an object that is either empty, or it consists of a root along with a 

possibly empty list TI, T,, . , Tk of subtrees, enumerated from left to right. Every node 

in an ordered tree stores a pointer to its leftmost child along with a pointer to its right 

sibling. The purpose of this section is to show that given its preorder and postorder 

traversals, an n-node ordered tree can be reconstructed in 0( 1) time on an MMB of 

size n x M. We are presenting a slightly more general result. namely we show how to 

reconstruct an ordered forest from its preorder and postorder traversals. 

Our algorithm relies on the well-known one-to-one correspondence between II-node 

ordered forests and n-node binary trees [6]. Specifically, let F = (Tl. T,, , T,,, ) be an 

ordered forest. The binary tree B(F) corresponding to F is either empty (in case F is 

empty), or else is defined as follows: 

l the root of B(F) is root(T,); 

l the left subtree of B(F) is B( T,l, T,,, . T,,), where TI ,. T12,. . TIN are the subtrecs 

of r-oot( T, ); 

l the right subtree of B(F) is B( Tl.. . T,,,). 

The following result is well-known [6]. 

Proposition 6.4. F and B(F) lzuce the same prror&r trucrrsul. Furtlwrmorr. tiw 

postordw trawrsul of F is precisrl~~ tlzr inorder truwrsul of’ B(F). 
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B(T) 
6 

3 

Fig. 9. Example of ordered tree reconstruction. 

Preorder Traversal: 1, 2, 3, 4, 5, 6, 7 

Postorder Traversal: 3, 4, 5, 2, 7, 6, I 

Preorder-horder Traversal of B(T): 1, 2, 3, 3, 

4, 4, 5, 5, 2, 6, 7, 7, 6, 1 
Pointer Assignment 

Proposition 6.4 motivates the following natural approach to reconstruct an ordered 

forest F from its preorder and postorder traversals. First, interpret the two traversals of 

F as the preorder and inorder traversals of the corresponding binary tree B(F). Using 

the algorithm discussed in the previous section reconstruct B(F). Finally, convert B(F) 

to F. 

We now present the details of the implementation of our forest reconstruction algo- 

rithm on an MMB of size n x 2n. It is easy to modify the algorithm to work on an 

MMB of size n x IZ. We assume that the preorder and postorder traversals of an ordered 

forest F are stored in the first row of the mesh in left to right order. Our algorithm 

proceeds as follows. 

Step 1. Reconstruct the binary tree B(F) having the same preorder traversal as F 

and whose inorder traversal corresponds to the postorder traversal of F. 

Step 2. Let u be a generic node in B(F); the processor in charge of u reinterprets 

pointers as follows: 

l if left(u) = v then set l-child(u) + v; 

l if right(u) = v then set r-sibling(u) t v. 

Fig. 9 illustrates the reconstruction of an ordered tree from its traversals. The upper 

arrows indicate l-child pointers and the lower arrows indicate r-sibling pointers. The 

correctness of our algorithm is easy to see. Furthermore, by Theorem 6.3 the running 

time is 0( 1). Consequently, we have proved the following result. 

Theorem 6.5. An n-node ordered forest stored in the $rst row of an A4A4B of 

size n x n can be reconstructed jkom its preorder and postorder traversals in 0( 1) 

time. 

7. Concluding remarks and open problems 

In this paper, we have presented a number of time-optimal tree algorithms on meshes 

with multiple broadcasting. Specifically, we have shown that the following tasks can 
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be solved in Q(logn) time: 

l Encode an n-node binary tree into a 2n-bitstring. 

l Encode an n-node ordered tree into a 2n-bitstring. 

l Recover an n-node binary tree from its 2n-bit encoding. 

l Recover an n-node ordered tree from its 2n-bit encoding. 

We have also shown that the following tasks can be performed in 0( 1) time: 

l Reconstruct an n-node binary tree from its preorder and inorder traversals. 

l Reconstruct an n-node ordered tree (forest) from its preorder and postorder traversals. 

Our algorithms rely heavily on time-optimal algorithms for sequences of parentheses 

that we developed. Specifically, we have shown that each of the following tasks can 

be solved in (_)(logn) time: 

l Finding all the matching pairs in a well-formed sequence of parentheses. 

l Determining the closest enclosing pair for every matching pair in a well-formed 

sequence. 

A number of problems are open. In particular, it is not known whether reconstructing 

an ordered tree in parent-pointer format can be done in less than O(logn) time. It is 

clear that such an algorithm using the closest enclosing pair can be devised. Can one 

do better? 

A very hard and important problem is to determine the sndlest size MMB on which 

instances of size n of the above tree-related computations run in O(logn) time, that is 

as fast as possible. To the best of our knowledge this question is still open. 
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