265 research outputs found
Recommended from our members
The Geochemical Earth Reference Model (GERM)
The Geochemical Earth Reference Model (GERM) initiative is a grass- roots effort with the goal of establishing a community consensus on a chemical characterization of the Earth, its major reservoirs, and the fluxes between them. Long term goal of GERM is a chemical reservoir characterization analogous to the geophysical effort of the Preliminary Reference Earth Model (PREM). Chemical fluxes between reservoirs are included into GERM to illuminate the long-term chemical evolution of the Earth and to characterize the Earth as a dynamic chemical system. In turn, these fluxes control geological processes and influence hydrosphere-atmosphere-climate dynamics. While these long-term goals are clearly the focus of GERM, the process of establishing GERM itself is just as important as its ultimate goal. The GERM initiative is developed in an open community discussion on the World Wide Web (GERM home page is at http://www-ep.es.llnl. gov/germ/germ-home.html) that is mediated by a series of editors with responsibilities for distinct reservoirs and fluxes. Beginning with the original workshop in Lyons (March 1996) GERM is continued to be developed on the Internet, punctuated by workshops and special sessions at professional meetings. It is planned to complete the first model by mid-1997, followed by a call for papers for a February 1998 GERM conference in La Jolla, California
Seafloor seismic monitoring of an active submarine volcano : local seismicity at Vailulu'u Seamount, Samoa
Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 5 (2004): Q06007, doi:10.1029/2004GC000702.We deployed five ocean bottom hydrophones (OBHs) for a 1-year seismic monitoring study of Vailulu'u Seamount, the youngest and easternmost volcano in the Samoan Archipelago. Four instruments were placed on the summit crater rim at 600â700 m water depth, and one was placed inside the crater at 1000 m water depth. An analysis of the first 45 days of records shows a very large number of seismic events, 211 of them local. These events define a steady background activity of about four seismic events per day, increasing to about 10 events per day during a week of heightened seismic activity, which peaked at 40 events during 1 day. We identified 107 earthquakes, whose arrivals could be picked on all five stations and that are likely located within the seamount, based on their similar waveforms. Two linear trends are defined by 21 of these events. These are extremely well correlated and located, first downward then upward on a steeply inclined plane that is close to the axial plane of the southeast rift as it emerges from the main summit of Vailulu'u. These events resemble volcanotectonic earthquakes from subaerial volcanoes in displaying very coherent seismic waveforms and by showing systematic, narrowly defined progressions in hypocenter locations. We propose that these events reflect brittle rock failure due to magma redistribution in or near a central magma reservoir.The bulk of this work was funded by NSF-OCE, in grants to HS and SRH and the OBSIP facility at Scripps
Apparent preservation of primary foraminiferal Mg/Ca ratios and Mg-banding in recrystallized foraminifera
Trace element and ÎŽ18O values of foraminifera are widely used to reconstruct oceanic temperatures throughout the Cenozoic and beyond. Previous work evaluating the geochemistry of foraminifera with differing degrees of physical preservation have shown that Mg/Ca and ÎŽ18O paleothermometers give discrepant values in recrystallized tests, with planktonic oxygen isotopes often yielding significantly lower temperatures than Mg/Ca ratios. To study the mobility of elements during diagenesis, we performed microspatial trace element analyses in Eocene Morozovella. Element maps show that trace element banding is readily identifiable and preserved, to an extent, in texturally recrystallized tests. A reaction-diffusion model was used to test whether the preservation of Mg-banding and the decoupling of ÎŽ18O and Mg/Ca values could be the result of diffusively limited âclosed-systemâ recrystallization. Results show that, in a closed system, internal features (such as Mg-banding) will dissipate prior to changes in bulk Mg/Ca composition, while the bulk ÎŽ18O value will typically change faster than Mg/Ca. This is observed regardless of what partitioning coefficient is used for Mg and demonstrates that the planktonic Mg/Ca proxy is more diagenetically robust than the ÎŽ18O proxy. Thus, this model can explain the observed decoupling of these two proxies. Furthermore, the preservation of intra-test Mg-banding shows potential for use in evaluating the preservation of primary Mg/Ca values and hence the accuracy of paleotemperature reconstructions
Revealing their true stripes: Mg/Ca banding in the Paleogene planktonic foraminifera genus Morozovella and implications for paleothermometry
The Mg/Ca ratio of foraminiferal calcite is a widely used empirical proxy for ocean temperature. Foraminiferal Mg/Ca-temperature relationships are based on extant species and are species-specific, introducing uncertainty when applying them to the fossil tests of extinct groups. Many modern species show remarkable heterogeneity in their intra-test Mg distributions, typically due to the presence of high Mg bands, which have a biological origin. Importantly, banding patterns differ between species, which could affect Mg/Ca-temperature relationships. Few studies have looked at intra-test variability in Mg/Ca ratios in extinct species of foraminifera, despite the obvious implications for paleothermometry. We used electron probe microanalysis (EPMA) to investigate intra-test Mg distributions in the fossil tests of two species of planktonic foraminifera from the extinct muricate mixed-layer-dwelling genus Morozovella, commonly used in Paleogene sea surface temperature reconstructions. Both M. aragonensis and M. crater show striking Mg banding patterns with multiple high and low Mg/Ca band pairs throughout the test wall in all chambers. The intra-test Mg variability in M. aragonensis and M. crater is similar to that in modern species widely used in paleoclimate reconstructions and banding patterns are consistent with published growth models for modern forms, albeit with subtle differences. The presence of Mg bands supports the application of Mg/Ca-palaeothermometry in extinct Morozovella species as well as the utility of EPMA for examining preservation of foraminifera tests in paleoclimatological studies. However, we emphasize the importance of rigorous assessments of inter- and intra-test Mg variability when using microanalytical techniques for foraminiferal Mg/Ca paleothermometry
Recommended from our members
A fluorescein tracer release experiment in the hydrothermally active crater of Vailulu'u volcano, Samoa
On 3 April 2001, a 20 kg point source of fluorescein dye was released 30 m above the bottom of the active summit caldera of Vailuluâu submarine volcano, Samoa. Vailuluâu crater is 2000 m wide and at water depths of 600â1000 m, with the bottom 200 m completely enclosed; it thus provides an ideal site to study the hydrodynamics of an active hydrothermal system. The magmatically driven hydrothermal system in the crater is currently exporting massive amounts of particulates, manganese, and helium. The dispersal of the dye was tracked for 4 days with a fluorimeter in tow-yo mode from the U.S. Coast Guard icebreaker Polar Sea. Lateral dispersion of the dye ranged from 80 to 500 m dÂŻÂč; vertical dispersion had two components: a diapycnal diffusivity component averaging 21 cmÂČ sÂŻÂč, and an advective component averaging 0.025 cm sÂŻÂč. These measurements constrain the mass export of water from the crater during this period to be 8ââ.ââșâŽËⶠx 10â· mÂł dÂŻÂč, which leads to a ââturnoverââ time for water in the crater of ~3.2 days. Coupled with temperature data from CTD profiles and Mn analyses of water samples, the power output from the crater is 610âââââșÂłâ”â° MW, and the manganese export flux is ~240 kg dÂŻÂč. The Mn/Heat ratio of 4.7 ng JÂŻÂč is significantly lower than ratios characteristic of hot smokers and diffuse hydrothermal flows on mid-ocean ridges and points to phase separation processes in this relatively shallow hydrothermal system.Keywords: dye tracer, eddy diffusion, volcanic, Vailulu'u, hydrotherma
Seamounts
Definition: Seamounts are literally mountains rising from the seafloor. More specifically, they are âany geographically isolated topographic feature on the seafloor taller than 100 m, including ones whose summit regions may temporarily emerge above sea level, but not including features that are located on continental shelves or that are part of other major landmassesâ (Staudigel et al., 2010). The term âguyotâ can be used for seamounts having a truncated cone shape with a flat summit produced by erosion at sea level (Hess, 1946), development of carbonate reefs (e.g., Flood, 1999), or partial collapse due to caldera formation (e.g., Batiza et al., 1984). Seamounts <1,000 m tall are sometimes referred to as âknollsâ (e.g., Hirano et al., 2008). âPetit spotsâ are a newly discovered subset of sea knolls confined to the bulge of subducting oceanic plates of oceanic plates seaward of deep-sea trenches (Hirano et al., 2006)
Hydrothermal venting at Vailulu'u Seamount : the smoking end of the Samoan chain
Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 5 (2004): Q02003, doi:10.1029/2003GC000626.The summit crater of Vailulu'u Seamount, the youngest volcano in the Samoan chain, hosts an active hydrothermal system with profound impact on the ocean water column inside and around its crater (2 km wide and 407 m deep at a 593 m summit depth). The turbidity of the ocean water reaches 1.4 NTU, values that are higher than in any other submarine hydrothermal system. The water is enriched in hydrothermal Mn (3.8 ppb) and 3He (1 Ă 10â11 cc/g) and we measured water temperature anomalies near the crater floor up to 0.2°C. The hydrothermal system shows complex interactions with the ocean currents around Vailulu'u that include tidally-modulated vertical motions of about 40â50 m, and replenishment of waters into the crater through breaches in the upper half of the crater wall. Inside and outside potential density gradients suggest that hydrothermal venting exports substantial amounts of water from the crater (1.3 ± 0.2 Ă 108 m3/day), which is in good agreement with fluxes obtained from a tracer release experiment inside the crater of Vailulu'u (0.8 Ă 108 m3/day [Hart et al., 2003]). This mass flux, in combination with the differences in the inside and outside crater temperature, yields a power output of around 760 megawatts, the equivalent of 20â100 MOR black smokers. The Mn output of 300 kg/day is approximately ten times the output of a single black smoker
Prodigious submarine landslides during the inception and early growth of volcanic islands
Volcanic island inception applies large stresses as the ocean crust domes in response to magma ascension and is loaded by eruption of lavas. There is currently limited information on when volcanic islands are initiated on the seafloor, and no information regarding the seafloor instabilities island inception may cause. The deep sea Madeira Abyssal Plain contains a 43 million year history of turbidites among which many originate from mass movements in the Canary Islands. Here, we investigate the composition and timing of a distinctive group of
turbidites that we suggest represent a new unique record of large-volume submarine landslides triggered during the inception, submarine shield growth, and final subaerial emergence of the Canary Islands. These slides are predominantly multi-stage and yet represent among the largest mass movements on the Earthâs surface up to three or more-times larger than subaerial Canary Islands flank collapses. Thus whilst these deposits provide invaluable information on ocean island geodynamics they also represent a significant, and as yet unaccounted, marine geohazard
Ultra-diffuse hydrothermal venting supports Fe-oxidizing bacteria and massive umber deposition at 5000âm off Hawaii
© International Society for Microbial Ecology, 2011. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in The ISME Journal 5 (2011): 1748â1758, doi:10.1038/ismej.2011.48.A novel hydrothermal field has been discovered at the base of LĆihi Seamount, Hawaii, at 5000âmbsl. Geochemical analyses demonstrate that âFeMO Deepâ, while only 0.2â°C above ambient seawater temperature, derives from a distal, ultra-diffuse hydrothermal source. FeMO Deep is expressed as regional seafloor seepage of gelatinous iron- and silica-rich deposits, pooling between and over basalt pillows, in places over a meter thick. The system is capped by mm to cm thick hydrothermally derived iron-oxyhydroxide- and manganese-oxide-layered crusts. We use molecular analyses (16S rDNA-based) of extant communities combined with fluorescent in situ hybridizations to demonstrate that FeMO Deep deposits contain living iron-oxidizing Zetaproteobacteria related to the recently isolated strain Mariprofundus ferroxydans. Bioenergetic calculations, based on in-situ electrochemical measurements and cell counts, indicate that reactions between iron and oxygen are important in supporting chemosynthesis in the mats, which we infer forms a trophic base of the mat ecosystem. We suggest that the biogenic FeMO Deep hydrothermal deposit represents a modern analog for one class of geological iron deposits known as âumbersâ (for example, Troodos ophilolites, Cyprus) because of striking similarities in size, setting and internal structures.Funding has been provided by the NSF
Microbial Observatories Program (KJE, DE, BT, HS and
CM), by the Gordon and Betty Moore Foundation (KJE),
the College of Letters, Arts, and Sciences at the University
of Southern California (KJE) and by the NASA Astrobiology
Institute (KJE, DE)
Geochemical stages at Jasper Seamount and the origin of intraplate volcanoes
Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 19 (2009): Q02001, doi:10.1029/2008GC002236.Ocean intraplate volcanoes (OIVs) are formed in a sequence of stages, from large to small, that involve a systematic progression in mantle melting in terms of volumes and melt fractions with concomitant distinct mantle source signatures. The Hawaiian volcanoes are the best-known example of this type of evolution, even though they are extraordinarily large. We explore the Pb-Sr-Nd-Hf isotopic evolution of much smaller OIVs in the Fieberling-Guadalupe Seamount Trail (FGST) and small, near-ridge generated seamounts in the same region. In particular, we investigate whether we can extend the Hawaiian models to Jasper Seamount in the FGST, which displays three distinct volcanic stages. Each stage has characteristic variations in Pb-Sr-Nd-Hf isotopic composition and trace element enrichment that are remarkably similar to the systematics observed in Hawaii: (1) The most voluminous, basal âshield buildingâ stage, the Flank Transitional Series (FTS), displays slightly isotopically enriched compositions compared to the common component C and the least enriched trace elements (143Nd/144Nd: 0.512866â0.512909, 206Pb/204Pb: 18.904â19.054; La/Sm: 3.71â4.82). (2) The younger and substantially less voluminous Flank Alkalic Series (FAS) is comparatively depleted in Sr, Nd, and Hf isotope compositions plotting on the side of C, near the least extreme values for the Austral Islands and St. Helena. Trace elements are highly enriched (143Nd/144Nd: 0.512912â0.512948, 206Pb/204Pb: 19.959â20.185; La/Sm: 9.24). (3) The Summit Alkalic Series (SAS) displays the most depleted Sr, Nd, and Hf isotope ratios and is very close in isotopic composition to the nearby near-ridge seamounts but with highly enriched trace elements (143Nd/144Nd: 0.512999â0.513050, 206Pb/204Pb: 19.080â19.237; La/Sm: 5.73â8.61). These data fit well with proposed multicomponent melting models for Hawaii, where source lithology controls melt productivity. We examine the effect of melting a source with dry peridotite, wet peridotite, and pyroxenite, calculating melt productivity functions with depth to evaluate the effect of potential temperature and lithospheric thickness. This type of melting model appears to explain the isotopic variation in a range of small to large OIVs, in particular for OIVs occurring far from the complicating effects of plate boundaries and continental crust, constraining their geodynamic origin.JBT acknowledges financial support from
the French Institut National des Sciences de lâUnivers. The
isotope work at SDSU was made possible by NSF and Keck
grants to BBH
- âŠ