123 research outputs found

    Indonesian Throughflow drove Australian climate form humid Pliocene to arid Pleistocene

    Get PDF
    Late Miocene to mid-Pleistocene sedimentary proxy records reveal that northwest Australia underwent an abrupt transition from dry to humid climate conditions at 5.5 million years (Ma), likely receiving year-round rainfall, but after ~3.3 Ma, climate shifted toward an increasingly seasonal precipitation regime. The progressive constriction of the Indonesian Throughflow likely decreased continental humidity and transferred control of northwest Australian climate from the Pacific to the Indian Ocean, leading to drier conditions punctuated by monsoonal precipitation. The northwest dust pathway and fully established seasonal and orbitally controlled precipitation were in place by ~2.4 Ma, well after the intensification of Northern Hemisphere glaciation. The transition from humid to arid conditions was driven by changes in Pacific and Indian Ocean circulation and regional atmospheric moisture transport, influenced by the emerging Maritime Continent. We conclude that the Maritime Continent is the switchboard modulating teleconnections between tropical and high-latitude climate systems.published_or_final_versio

    Diagenetic evolution of lower Jurassic platform carbonates flanking the Tazoult salt wall (Central High Atlas, Morocco)

    Get PDF
    Platform carbonates diagenesis in salt basins could be complex due to potential alterations of fluids related and non‐related to diapirism. This paper presents the diagenetic history of the Hettangian to Pliensbachian platform carbonates from the Tazoult salt wall area (central High Atlas, Morocco). Low structural relief and outcrop conditions allowed to define the entire diagenetic evolution occurred in the High Atlas diapiric basins since early stages of the diapiric activity up to their tectonic inversion. Precipitation of dolomite and calcite from both warmed marine‐derived and meteoric fluids characterised diagenetic stages during Pliensbachian, when the carbonate platforms were exposed and karstified. Burial diagenesis occurred from Toarcian to Middle Jurassic, due to changes of salt‐induced dynamic related to increase in siliciclastic input, fast diapir rise and rapid burial of Pliensbachian platforms. During this stage, the diapir acted as a physical barrier for fluid circulation between the core and the flanking sediments. In the carbonates and breccias flanking the structures, dolomite and calcite precipitated from basinal brines, whereas carbonate slivers located in the core of the structure, were affected by the circulation of Mn‐rich fluids. The final diagenetic event is characterised by the income of meteoric fluids into the system during uplift caused by Alpine orogeny. These results highlight the relevant influence of diapirism on the diagenetic modifications in salt‐related basins in terms of diagenetic events and involved fluids

    Cell surface antigens in renal tumour cells: detection by immunoluminescence and enzymatic analysis

    Get PDF
    Two renal cell carcinoma cell lines (49RC 43STR and 75RC 2STR) were characterized by detection of the cell surface proteins: CD44(var), intercellular adhesion molecule-1 (ICAM-1), urokinase-type plasminogen activator (uPA) and its receptor and aminopeptidase N (APN). To detect their localization the immunoluminescent technique was used. In addition, the enzyme activity of uPA and APN was investigated in cell suspensions as well as in monolayers. The latter procedure was more advantageous since the additional use of HPLC permits a single registration of the fluorescent hydrolysis-product AMC (7-amino-4-methylcoumarin) without interference by cellular autofluorescence or non-reacted fluorescent substrate. Unlike 75RC 2STR, the cell line 49RC 43STR expressed high levels of uPA and APN. Contrary to that the cell line 75RC 2STR expressed high levels of ICAM-1 and CD44(v6), whereas 49RC 43STR showed a low level of ICAM-1 and no distinct light signal with anti-CD44(v6). The uPA activity was measured directly as well as indirectly (via plasmin) with the substrate Z-Gly-Gly-Arg-AMC. Both activator and plasmin activity were inhibited by D-Val-Phe-Lys-CMK and phenylmethylsulfonyl fluoride. The anti-catalytic antibody to uPA and that to uPA receptor were found to be inhibiting the uPA activity in a concentration-dependent manner. APN activity was assayed using alanine-p-nitroanilide. Peptidase activity was effectively inhibited by 1,10-phenanthroline and partly inhibited by ethylenediamine-tetraacetic acid. © 2001 Cancer Research Campaignhttp://www.bjcancer.co

    Induction of plasminogen activator inhibitor type-1 (PAI-1) by hypoxia and irradiation in human head and neck carcinoma cell lines

    Get PDF
    Contains fulltext : 53187.pdf ( ) (Open Access)BACKGROUND: Squamous cell carcinoma of the head and neck (SCCHN) often contain highly radioresistant hypoxic regions, nonetheless, radiotherapy is a common treatment modality for these tumours. Reoxygenation during fractionated radiotherapy is desired to render these hypoxic tumour regions more radiosensitive. Hypoxia additionally leads to up-regulation of PAI-1, a protein involved in tumour progression and an established prognostic marker for poor outcome. However, the impact of reoxygenation and radiation on PAI-1 levels is not yet clear. Therefore, we investigated the kinetics of PAI-1 expression and secretion after hypoxia and reoxygenation, and determined the influence of ionizing radiation on PAI-1 levels in the two human SCCHN cell lines, BHY and FaDu. METHODS: HIF-1alpha immunoblot was used to visualize the degree of hypoxia in the two cell lines. Cellular PAI-1 expression was investigated by immunofluorescence microscopy. ELISA was used to quantify relative changes in PAI-1 expression (cell lysates) and secretion (cell culture supernatants) in response to various lengths (2-4 h) of hypoxic exposure (< 0.66% O2), reoxygenation (24 h, 20% O2), and radiation (0, 2, 5 and 10 Gy). RESULTS: HIF-1alpha expression was induced between 2 and 24 h of hypoxic exposure. Intracellular PAI-1 expression was significantly increased in BHY and FaDu cells as early as 4 h after hypoxic exposure. A significant induction in secreted PAI-1 was seen after 12 to 24 h (BHY) and 8 to 24 h (FaDu) hypoxia, as compared to the normoxic control. A 24 h reoxygenation period caused significantly less PAI-1 secretion than a 24 h hypoxia period in FaDu cells. Irradiation led to an up-regulation of PAI-1 expression and secretion in both, BHY and FaDu cells. CONCLUSION: Our data suggest that both, short-term (approximately 4-8 h) and long-term (approximately 20-24 h) hypoxic exposure could increase PAI-1 levels in SCCHN in vivo. Importantly, radiation itself could lead to PAI-1 up-regulation in head and neck tumours, whereas reoxygenation of hypoxic tumour cells during fractionated radiotherapy could counteract the increased PAI-1 levels

    Expression pattern of the urokinase-plasminogen activator system in rat DS-sarcoma: Role of oxygenation status and tumour size

    Get PDF
    The urokinase plasminogen activator system plays a central role in malignant tumour progression. Both tumour hypoxia and enhancement of urokinase plasminogen activator, urokinase plasminogen activator-receptor and plasminogen activator inhibitor type 1 have been identified as adverse prognostic factors. Upregulation of urokinase plasminogen activator or plasminogen activator inhibitor type 1 could present means by which hypoxia influences malignant progression. Therefore, the impact of hypoxia on the expression pattern of the urokinase plasminogen activator system in rat DS-sarcoma in vivo and in vitro was examined. In the in vivo setting, tumour cells were implanted subcutaneously into rats, which were housed under either hypoxia, atmospheric air or hyperoxia. For in vitro studies, DS-sarcoma cells were incubated for 24 h under hypoxia. Urokinase plasminogen activator and urokinase plasminogen activator-receptor expression were analysed by flow cytometry. Urokinase plasminogen activator activity was measured using zymography. Plasminogen activator inhibitor type 1 protein levels in vitro and in vivo were examined with ELISA. PAI-1 mRNA levels were determined by RT–PCR. DS-sarcoma cells express urokinase plasminogen activator, urokinase plasminogen activator-receptor, and plasminogen activator inhibitor type 1 in vitro and in vivo. The urokinase plasminogen activator activity is enhanced in DS-sarcomas compared to normal tissues and rises with increasing tumour volume. The oxygenation level has no impact on the urokinase plasminogen activator activity in cultured DS-sarcoma cells or in solid tumours, although in vitro an increase in plasminogen activator inhibitor type 1 protein and mRNA expression after hypoxic challenge is detectable. The latter plasminogen activator inhibitor type 1 changes were not detectable in vivo. Hypoxia has been demonstrated to contribute to the upregulation of some components of the system in vitro, although this effect was not reproducible in vivo. This may indicate that the serum level of plasminogen activator inhibitor type 1 is not a reliable surrogate marker of tumour hypoxia

    Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: focus on the cancer hallmark of tumor angiogenesis

    Get PDF
    One of the important ‘hallmarks’ of cancer is angiogenesis, which is the process of formation of new blood vessels that are necessary for tumor expansion, invasion and metastasis. Under normal physiological conditions, angiogenesis is well balanced and controlled by endogenous proangiogenic factors and antiangiogenic factors. However, factors produced by cancer cells, cancer stem cells and other cell types in the tumor stroma can disrupt the balance so that the tumor microenvironment favors tumor angiogenesis. These factors include vascular endothelial growth factor, endothelial tissue factor and other membrane bound receptors that mediate multiple intracellular signaling pathways that contribute to tumor angiogenesis. Though environmental exposures to certain chemicals have been found to initiate and promote tumor development, the role of these exposures (particularly to low doses of multiple substances), is largely unknown in relation to tumor angiogenesis. This review summarizes the evidence of the role of environmental chemical bioactivity and exposure in tumor angiogenesis and carcinogenesis. We identify a number of ubiquitous (prototypical) chemicals with disruptive potential that may warrant further investigation given their selectivity for high-throughput screening assay targets associated with proangiogenic pathways. We also consider the cross-hallmark relationships of a number of important angiogenic pathway targets with other cancer hallmarks and we make recommendations for future research. Understanding of the role of low-dose exposure of chemicals with disruptive potential could help us refine our approach to cancer risk assessment, and may ultimately aid in preventing cancer by reducing or eliminating exposures to synergistic mixtures of chemicals with carcinogenic potential

    The use of biodiversity as source of new chemical entities against defined molecular targets for treatment of malaria, tuberculosis, and T-cell mediated diseases: a review

    Full text link
    corecore