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Abstract Late Miocene to mid-Pleistocene sedimentary proxy records reveal that northwest Australia
underwent an abrupt transition from dry to humid climate conditions at 5.5 million years (Ma), likely
receiving year-round rainfall, but after ~3.3 Ma, climate shifted toward an increasingly seasonal precipitation
regime. The progressive constriction of the Indonesian Throughflow likely decreased continental humidity
and transferred control of northwest Australian climate from the Pacific to the Indian Ocean, leading to drier
conditions punctuated by monsoonal precipitation. The northwest dust pathway and fully established
seasonal and orbitally controlled precipitation were in place by ~2.4 Ma, well after the intensification of
Northern Hemisphere glaciation. The transition from humid to arid conditions was driven by changes in
Pacific and Indian Ocean circulation and regional atmospheric moisture transport, influenced by the
emerging Maritime Continent. We conclude that the Maritime Continent is the switchboard modulating
teleconnections between tropical and high-latitude climate systems.

Plain Language Summary Australia is themost arid habitable continent on earth, however its climate
is capable of dramatic changewith seasonalmonsoon rains in the otherwise arid northwest. We analyzed natural
gamma radiation in a recently drilled borehole (IODP Expedition 356 Site U1463) off NW Australia to examine
long-term climate changes over the last 6 million years. Based on variations in potassium, thorium and uranium,
as well as common clay minerals, we show that the NW continent was more humid during the Pliocene period,
between ~5.5 and 3.3 million years ago (Humid Interval), and became arid by the early Pleistocene, ~2.4 million
years ago (Arid Interval). We attribute the Humid Interval to an expansion of warm surface waters in the western
Pacific, supplying warm and moist air to the continent. As Australia moved north, the Maritime Continent
(islands to the north) emerged, restricting the flow of warm surface currents from the Pacific (Indonesian
Throughflow), resulting in drier conditions on land. The Arid Interval ushered in amodern-like Australian climate,
with seasonal rainfall and dust storms, and a more modern Indian Ocean circulation. Our results show that the
Maritime Continent is an important control on both Australian climate and Indian Ocean circulation.

1. Introduction

The Indonesian Throughflow (ITF) is the only tropical pathway in modern ocean circulation that allows for
interbasin transport of warm waters from the western Pacific into the eastern Indian Ocean [Gordon, 2005;
Du and Qu, 2010] (Figure 1). Rainfall on the Maritime Continent and adjacent land masses combined with
continental riverine input from areas impacted by the Asian monsoon produces fresher ITF outflow waters
[Molnar and Cronin, 2015]. Modeling studies show that complete closure of the ITF would significantly reduce
moisture availability in northern Australia [Krebs et al., 2011] demonstrating the pivotal role of the ITF for
moisture supply to northwest Australia [Molnar and Cronin, 2015; Cane and Molnar, 2001].
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Today, the austral summer monsoon eases aridity in northwest Australia and is driven by continental
heating, with moisture provided by warm Indonesian and western Pacific waters via the ITF (Text S1 and
Figure S1 in the supporting information). However, rainfall intensity and temperature are changing with
global warming. Extreme events, such as intense rainfall or drought, impact freshwater availability and

Figure 1. Tectonic and oceanographic change at major periods of Australian Neogene climatic change. (a) Modern setting, Site U1463 location on the northwest
Australian shelf; (b) Arid Interval (~2.4 Ma onward); (c) Transitional Interval (~3.3–2.4 Ma); (d) Humid Interval (~5.5–3.3 Ma); and (e) Late Miocene (~7–6 Ma).
Paleogeographic maps modified from Hall [2012] except Figure 1e which retains the Figure 1d configuration. Modern NW dust pathway in Figures 1a and 1b is after
Bowler [1976, 1982]. Stylized modern ITF is in red (Figure 1a); East Gyral Current in black; and Leeuwin Current in green; see Figure S1e for detailed circulation
patterns.
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distribution, posing societal and economic challenges [Holper, 2011; Hope et al., 2010]. Forecasting climate
variability and constraining the likelihood of extreme events requires an improved understanding of the
fundamental controls on Australian climate, including Indian Ocean circulation and the Australasian mon-
soon [Steinke et al., 2014].

Over geological time scales, Australia experienced extreme hydrological fluctuations during the late Neogene
[Martin, 2006; Groeneveld et al., 2017]. Although these changes are likely related to the uplift of the Maritime
Continent and subsequent changes in the ITF [Molnar and Cronin, 2015], both the timing and controls on
Neogene Australian continental climate remain undefined. Our understanding of the mechanisms driving
Australian continental aridity and constraints on the rate of paleoclimate change are limited by the absence
of long, continuous climate archives on land and offshore. International Ocean Discovery Program (IODP)
Expedition 356 [Gallagher et al., 2017] recently drilled sediments on the northwest Australian shelf
(Figure 1a), providing robust temporal constraints on Neogene climate. Here we present new climate records
from IODP Site U1463 (Figure 2) detailing the timing andmagnitude of variability since 5.5 Ma (latest Miocene
to Pleistocene) in a regional and global context. While the climate drivers underpinning our long-term
records may operate on a different time scale than short-term global change, they have the potential to elu-
cidate the main controls and feedbacks on Australia’s complex climate evolution [Steinke et al., 2014;
Fitzsimmons et al., 2013].

2. Materials and Methods
2.1. IODP Site U1463 Sedimentology and Natural Gamma Radiation

Sediment recovery at Site U1463 (18°580S, 117°370E; 145 m water depth) was 80% [Gallagher et al., 2017], per-
mitting an excellent correlation between the lithology and the downhole wireline logs (Figure S2). Logging
data do not include the upper 72 m because the drill pipe was positioned at that depth. Hemipelagic sedi-
ments accumulated at rates averaging 6 cm/ky in the Pliocene and 11 cm/ky in the early Pleistocene
(Figure S4), allowing for a detailed analysis of continental climate. Sediments are mainly composed of olive
gray mudstone and are remarkably homogeneous throughout the studied section. Paleodepth estimates
from benthic foraminifera indicate an outer shelf to upper bathyal marine environment (250–1000 m).
Sediments used here are from the interval 89.70–413.68 cored meters below seafloor (m CSF-A), correspond-
ing to 88–411 wireline matched below seafloor (m WMSF) and equivalent to Cores U1463B-10H to 48X
(Figure S2). The relative content of clay mineral phases (illite and kaolinite) in 17 bulk samples was analyzed
using X-ray diffraction (XRD) to ground truth the wireline logs (Text S2).

The Hostile Environment Natural Gamma Ray Sonde (HNGS) was used to measure natural gamma radiation
(NGR) in the sediments. The HNGS uses two bismuth germanate scintillation detectors and five-window spec-
troscopy to determine concentrations of potassium (K, in weight percent [wt %]), thorium (Th, in parts per
million [ppm]), and uranium (U, ppm) from the characteristic gamma ray energies of isotopes in the 40K,
232Th, and 238U radioactive decay series (Text S2). The computation of the elemental abundances uses a least
squares method of extracting U, Th, and K elemental concentrations from the spectral measurements and is
supported by discrete analyses [De Vleeschouwer et al., 2017]. The HNGS filters out gamma ray energies below
500 keV, eliminating sensitivity to bentonite or KCl in the drilling mud and improving accuracy. As the HNGS
response is influenced by the borehole diameter, data are corrected for borehole diameter variations. In the
upper ~80 m, the HNGS measures NGR through the drill pipe, causing an attenuated signal [Gallagher et al.,
2017]. Although relative variations in this interval aremeaningful, we do not interpret this portion of the record.

We interpret variations in the concentration of U, Th, and K and the ratio of Th/K as reflecting windblown or
riverine flux of detrital material in the marine system. It is possible that some variation could be driven by
changes in carbonate production. For example, under a constant flux of detrital (K-bearing) material, a
doubling of the sedimentation rate would imply a halving of the K concentration. However, this mechanism
is unlikely to be the driver of the K variations at Site U1463 because it would require unusual sedimenta-
tion patterns (see section 3.1). We evaluated this issue quantitatively (Figure S5), calculating K, Th, and U
flux (Φ, in g/cm2/kyr) using the following equation:

Φi ¼ wi� ρ � sed rate;

where w is the element i (K, Th, or U) mass fraction, ρ the average bulk density in an interval ± 10 m
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surrounding the stratigraphic position in question (in g/cm3) and sed rate the instantaneous sedimentation
rate at that position (in cm/kyr).

2.2. Age Model

Site U1463 yielded a complete stratigraphic succession from the late Miocene to the early Pleistocene, with
abundant and well-preserved calcareous nannofossils and planktonic foraminifers. The standard zonal

Figure 2. IODP Site U1463 downhole wireline log data plotted by age. (a) Thorium-potassium ratio (Th/K × 10�4), com-
pared to an austral eccentricity-tilt-precession composite. Intervals with significant correlation between both records
(p < 0.01; 500 kyr windows) are indicated by rectangles (red: positive correlation; blue: negative correlation). Negative
correlation indicates enhanced summer precipitation (high %K and low Th/K) at times of relatively high summer insolation
(high ETP). (b) Uranium (U ppm) and (c) potassium (%K); lines are 15-point moving average. Note reversed y axis in
Figure 2b. (d) Mg/Ca-derived temperature records from nearby Site 763A [Karas et al., 2011b] are shown for comparison
along with (e) the LR04 benthic foraminiferal stable isotope stack [Lisiecki and Raymo, 2005], the Humid Interval
(~5.5–3.3 Ma), Transitional Interval (3.3–2.4 Ma), and the Arid Interval (~2.4 Ma onward) are indicated. Blue areas markmajor
changes in the Western Pacific Warm Pool (WPWP), Indian Ocean circulation, and Northern Hemisphere (NH) glaciation.
Uplift in the Maritime Continent (MC), controlling flow through the ITF, is highlighted in red (strongest colors keyed to most
likely timing).

Geophysical Research Letters 10.1002/2017GL072977

CHRISTENSEN ET AL. ITF DROVE AUSTRALIAN CLIMATE 6917



schemes and datums are calibrated to the geological time scale of Gradstein et al. [2012]. The depth scale of
wireline logs (m WMSF) generally has a small offset from the cored depth scale (m CSF-A), along which the
biostratigraphic datums are reported. The offset ranges between 0 and 6.14 m in Hole U1463C, which is
the hole in which most biostratigraphic datums were defined. We converted the CSF-A depths of biostrati-
graphic datums to the WMSF depth scale by correlating distinct features in the wireline and core-based total
natural gamma radiation (NGR) records (Figure S2), and linear interpolation between the established tie-
points between the core data and wireline logs. Subsequently, a biostratigraphic age model was constructed
for the wireline records by fitting a third-order polynomial through the biostratigraphic tiepoints (Figure S4).

Next, the wireline potassium (K) record was subjected to evolutive harmonic analysis using the 3-2πmultita-
per method [Thomson, 1982], as implemented in the R-package astrochron [Meyers, 2014], to detect a possi-
ble imprint of astronomical climate forcing (Figure S3). The Site U1463 biostratigraphic age model appears to
estimate sedimentation rate accurately throughout the studied interval, as high spectral amplitude is
observed at frequencies close to the expected frequencies of eccentricity (100 kyr and 405 kyr periodicity).
The 405 kyr eccentricity cycle especially has high amplitude throughout the entire interval. The biostrati-
graphic age model was then further constrained by applying a cyclostratigraphic approach. We used a
band-pass filter (300–500 kyr) to extract variations in K concentrations that are related to the 405 kyr eccen-
tricity cycle. The band-pass filtered signal was then correlated to the La2010 eccentricity solution [Laskar
et al., 2011]. This correlation implied only a modest modification of the original biostratigraphic age model,
suggesting age shifts of less than a few tens of thousands of years. Only small modifications were expected,
as the biostratigraphic age model in the studied interval is well constrained (Figure S4).

We compare the Th/K ratio to an eccentricity-tilt-precession (ETP) composite with equal weight of the three
astronomical parameters [Imbrie, 1985] (Figure 2a). We use ETP rather than a local insolation signal because
ETP exhibits a direct eccentricity imprint. ETP is enhanced under high obliquity (tilt, T), leading to globally
increased seasonality. Precession’s contribution is positive when perihelion occurs during the austral summer
half year, and vice versa, and therefore, maximum of ETP corresponds to maximum in seasonality in the
Southern Hemisphere. The Pearson’s linear correlation coefficient and associated p value are calculated, con-
sidering Th/K ratios and their corresponding ETP value within 500 kyr wide windows.

2.3. Organic Geochemistry

Eighteen sediment samples for organic geochemistry were analyzed at the University of Massachusetts
Amherst on an aliquot of the squeezecake sediment from shipboard interstitial water sampling, obtained
by squeezing 5 or 10 cm whole-round sections [Manheim and Sayles, 1974]. Freeze-dried sediments were
homogenized and extracted with 9:1 dichloromethane (DCM)/methanol (v/v) using an Accelerated Solvent
Extractor (ASE 200), and the total lipid extract was separated into apolar (9:1 hexane/DCM (v/v)), ketone
(1:1 hexane/DCM (v/v)), and polar (1:1 DCM/methanol (v/v)) fractions using alumina oxide column chromato-
graphy. The polar fractions were dissolved in a mixture of 99:1 hexane/isopropanol (v/v) and filtered through
a 0.45 μm PTFE filter before being analyzed on an Agilent 1260 high-performance liquid chromatography
coupled to an Agilent 6120 MSD following the methods of Hopmans et al. [2000] and Schouten et al.
[2002]. TEX86 ratios were calculated as described by Schouten et al. [2002], and the BAYSPAR calibration
[Tierney and Tingley, 2014] was applied to derive overall trends in temperature.

3. Results
3.1. NGR as a Proxy for Continental Humidity

The primary data set for assessing moisture and aridity is the natural gamma ray suite of downhole logs,
mainly potassium (K) and thorium (Th). The K component of the natural gamma ray log is often used to infer
the concentration of K-bearing aluminosilicates, mainly clays and feldspars [Ehrenberg and Svana, 2001].
Recently, the abundance of K, normalized to Ca, in marine sediments has been used as a proxy for river runoff
and terrigenous input from the northwest Australian continent [Kuhnt et al., 2015]. The covariation of illite
with K at Site U1463 supports this relationship (Figure S5). Therefore %K provides an indicator of continental
moisture and is consistent with elevated modern %K in association with area watersheds (Figure S6).

Our analyses indicate that the changes in %K are not the result of dilution. For the meter-scale oscillations in
the K record between 0.5 and 1 wt % throughout the Pliocene to result from changing sedimentation rates
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under a constant flux, the sedimentation rate would have to double and halve in an alternating fashion.
Additionally, the Pliocene evolution of sedimentation rates, as estimated by nannofossil and planktonic for-
aminifera datums, does not correlate with observed changes in %K. The biostratigraphic time constraints
suggest overall high sedimentation rate throughout the late Miocene-Pliocene with a relative increase during
the early Pleistocene (Figure S4). Finally, the significant intervals of elemental change (Figure 2), which we
interpret as climatic change, correspond with changes in flux rather than sedimentation rate (Figure S5).

The Th/K ratio derived from spectral gamma ray logging is a proxy for heavy mineral concentration in the sili-
ciclastic mineral fraction [Šimíček and Bábek, 2015]. This relationship is driven by a significant component of
heavy minerals, particularly zircon (ZrSiO4), which are associated with Th and U [Svendsen and Hartley, 2001]
(Text S2). Given this association, and as the abundance of zircon grains is a proxy common for windblown
material from the Australian desert [Simicek and Bàbek, 2015; Stuut et al., 2014], the Th/K ratio (Figure 2a) indi-
cates dust transport to the northwest Australian shelf from the continental interior (Figure S1f). Today, high-
est Th/K in the region is associated with the modern dust pathway (Figure S7). Furthermore, U ppm, which is
also associated with heavy minerals (Text S2), shows similar variations as Th/K, exhibiting a large increase at
the onset of the Arid Interval (Figure 2b). Uranium-bearing igneous rocks are exposed at the surface on the
Australian continent [Schofield, 2009] and U ppm and Th/K are both elevated under themodern dust pathway
(Figures S7 and S8). Although U is not a traditional paleoclimate proxy for dust transport, given the similarities
with the %K and Th/K records, we suggest that at Site U1463, U can be used as a proxy for aridity in
this region.

4. Discussion
4.1. Humidity, ETP, and Seasonality

Our records reveal the onset of widespread wet conditions across northwest Australia at ~5.5 Ma, lasting for
2.2 million years, indicated by high K, low-amplitude Th/K variation, and low U concentrations (Figure 2).
Previous studies argued for a dry early Pliocene based on evidence showing the termination of Western
Australia paleorivers in the middle Miocene [Martin, 2006]. Instead, we find that the early Pliocene was a time
of rejuvenation of fluvial activity. The Humid Interval (~5.5 to 3.3 Ma) correlates with high %K and illite
(Figures 2 and S5). Mass accumulation rates (Figure S5) do not increase markedly at the 5.5 Ma onset and
instead decrease into the Humid Interval, indicating that %K is not an artifact of sediment accumulation rate
and supporting our interpretation of %K as an indicator for precipitation and humidity.

Precipitation during the Humid Interval was likely year-round as evidenced by the low variability in Th/K;
the negative correlation between the austral eccentricity-tilt-precession composite (ETP) and Th/K indi-
cates that summer precipitation was enhanced during summer insolation maxima (Figure 2). Existing
Australian paleoclimate records are heavily biased toward the southeast (Figure 3); thus, our new record
fills a gap westward of the arid center, showing that while humidity decreased in the central region (d)
wetter climates prevailed around the continental margin (Figures 3c and 3e) [Martin, 2006; Metzger and
Retallack, 2010; Miller et al., 2012]. Previous studies have assumed modern day climate gradients prevailed
in the past, yet our data point to greater complexity and changing precipitation gradients over the past 6
million years. Humidity reduced gradually during the Transitional Interval from 3.3 to ~2.4 Ma (Figures 2
and 3b), concurrent with change from the climatically stable Humid Interval to a drier and more variable
climate (Figure 2a). Increasing variability in Th/K, coupled with low K and high U concentrations, indicates
that the continental interior became progressively more dry at ~2.4 Ma and heralded the onset of the
Arid Interval (~2.4 Ma to at least 1 Ma).

During the Arid Interval, when the modern northwest dust pathway [Bowler, 1982] (Figures 2a and 2b)
and the modern-like Australian monsoon became established, high Th/K ratios correlate with ETP maxima,
indicating orbital configurations that favored strong seasonality. At ETP maxima, winds were sufficient for
eolian sediment transport (with more variable Th/K and high U) to the study area. Conversely, at ETP
minima during the Arid Interval, the seasonal insolation cycle was dampened, limiting eolian sediment
supply. Thus, this major change in the Arid Interval, setting up the present-day climate pattern in north-
west Australia, began at ~2.4 Ma, well after the intensification of Northern Hemisphere glaciation at
2.73 Ma [Haug et al., 1999].

Geophysical Research Letters 10.1002/2017GL072977
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4.2. Rapid Onset of Humidity at 5.5 Ma

A strong relationship exists between modern Australian climate and sea surface temperatures (SSTs) in the
surrounding oceans [King et al., 2014]. The onset of the Humid Interval occurred when the Western Pacific
Warm Pool (WPWP) expanded west to the South China Sea [Zhang et al., 2014; Brierley et al., 2009] and eastern
Indian Ocean [Karas et al., 2011b]. This marks the end of global cooling in the late Miocene [Herbert et al.,
2016]. Warmer waters surrounding the Australian continent provided the increased moisture supply needed
for the development and persistence of the Humid Interval (Figures 1d and 4). The presence of a tropical
Pacific zonal SST gradient [Zhang et al., 2014], which would have focused rainfall over the west Pacific, sup-
ports enhanced moisture availability in northern Australia. Concurrently, low levels of dust transport during
the Humid Interval hint at the presence of greater vegetation cover in central Australia. Vegetation has a posi-
tive feedback on northern Australian rainfall when it is not seasonal [Herold et al., 2011], enhancing available
humidity. Indeed, the correlation between ETP and Th/K suggests low seasonality from 5.5 to 3.3Ma (Figure 2a).
A wet northwest Australia is consistent with evidence of a humid continental perimeter during the Pliocene
[Martin, 2006; Metzger and Retallack, 2010; Miller et al., 2012; Sniderman et al., 2016] (Figures 3 and S9), and in
agreement with high SST (Figure 4) at our study area.

4.3. Maritime Continent Control on Indian Ocean Circulation

Indian Ocean circulation was defined by a single dominant gyre from 5.5 to 3.3 Ma as indicated by warmwes-
tern, central, and eastern Indian Ocean SSTs during the Humid Interval. The more open ITF transport limited
development of robust equatorial circulation, aided by the more southerly Pliocene position of the Indian
plate. Lower SSTs in the central and eastern Indian Ocean during the Transitional Interval (Figure 4) signal
the start of more complex equatorial current systems. We suggest that the start of bigyral Indian Ocean cir-
culation is the result of strengthening global atmospheric circulation [Lawrence et al., 2013], combined with
restriction of the ITF surface water transport [Karas et al., 2011b] (Figure 1c). Models show reduced ITF trans-
port drives enhanced precipitation in the western Pacific at the expense of the eastern Indian Ocean and
northwest Australia, leading to a warmer and drier northwest Australia [Krebs et al., 2011]. It was not until
~2.4 Ma, coincident with the onset of the Arid Interval, when modern, seasonally controlled equatorial circu-
lation fully developed. As trade winds shifted equatorward, and global atmospheric circulation achieved a
more modern position by ~2 Ma [Lawrence et al., 2013], seasonality and equatorial Indian Ocean circulation
were enhanced during the Arid Interval, along with offshore dust transport (Figure 1b).

Reduced moisture availability associated with the Transition Interval beginning at 3.3 Ma coincides with cool-
ing in the WPWP [Zhang et al., 2014], contracting global atmospheric circulation [Lawrence et al., 2013], and

Figure 3. Compilation of Australian Neogene climate records and their proximity to Site U1463. (a) Map of the most important records (details in Text S4 and
Figure S9). Open symbols represent early and middle Pleistocene (>0.7 Ma), and solid symbols indicate Pliocene records. Circle has a 1500 km radius. (b–e)
Schematic interpretations of aridity records (blue arrows in Figure 3a) in northwest Australia (Figure 3b) (Site U1463, this study); south-central Australia (Figure 3c)
[Miller et al., 2012], including paleoprecipitation [Sniderman et al., 2016]; central Australia (Figure 3d) [Bowler, 1982] with paleoprecipitation history [Metzger and
Retallack, 2010]; solid and dashed red lines indicate range of timing; southeast Australia (Figure 3e) [Martin, 2006]. Figure 3c is a smoothed version of the original
[Miller et al., 2012] with blue precipitation records [Sniderman et al., 2016] superimposed. Note arid and humid are relative terms and cannot be directly compared
between panels.
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decreased midlatitude and subpolar SSTs [Karas et al., 2011a] (Figure 4). Central Indian Ocean sea surface
conditions remained stable, whereas subsurface waters freshened and cooled between 3.5 and 2.95 Ma
[Karas et al., 2009, 2011b] associated with the ongoing ITF constriction. Specifically, eastern Indian Ocean
SSTs dropped by 2–3°C from 3.3 Ma onward as the result of a reduction in surface ITF flow [Karas et al.,
2011b]. Coincident with the onset of the Arid Interval, an ~2°C cooling is recorded in the central Indian
Ocean [Herbert et al., 2010], full seasonality developed off Sumatra [Gupta and Thomas, 2003], benthic
productivity increased in the eastern Indian Ocean [Rai and Singh, 2001], and drying in northeast Africa
[Liddy et al., 2016]. Our well log data document a tight connection between the timing of changes in
Indian Ocean circulation and Australian climate (Figures 2 and 4). SST estimates at Site U1463 support this
relationship, showing cooling into the Arid Interval (Figures 4 and S10).

Figure 4. Sea surface temperature evolution in the Indian Ocean from 6 to 0.5 Ma. (a, b) Foraminiferal Mg/Ca-based tem-
peratures fromWestern Equatorial Indian Ocean (Site 709 [Karas et al., 2011b]) (red); Eastern Indian Ocean (Site 763A [Karas
et al., 2011b]) (blue; as in Figure 2), and Central Equatorial Indian Ocean (Site 214 [Karas et al., 2009]) (black symbols)—
where Figure 4a surface dwelling and Figure 4b deeper-dwelling planktonic foraminifer species reveal stable surface, and
cooling deeper waters in the Central Equatorial Indian Ocean. Lines in Figure 4a are 5-point moving averages. Shaded
green area indicates the Humid Interval (~5.5–3.3 Ma). (c) Low-resolution TEX86 data for Site U1463 plotted using Bayesian,
Spatially-Varying Regression (BAYSPAR) calibration of Tierney and Tingley [2014], gray shading represents the 1-sigma error.
We stress relative temperature changes and trends over time rather than absolute SST estimates.
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5. Conclusions

The ongoing restriction of the ITF caused progressive oceanographic changes that likely drove shifts in pre-
cipitation. We attribute the correlation between ocean circulation and Australian climate to a combination
and cumulative impact of tectonic changes and associated nonlinear climate feedbacks. It is becoming
increasingly clear that the Indian Ocean plays an important role in global circulation and heat transport
[Schott et al., 2009; Lee et al., 2015]. The major steps in reorganization of Indian Ocean circulation and
Australian climate systems occurred at ~5.5 Ma, ~3.3 Ma, and ~2.4 Ma and do not coincide with the onset
of Northern Hemisphere glaciation at ~2.73 Ma [Haug et al., 1999]. We hypothesize that global climate
may operate as two distinct but connected systems, one more closely associated with monsoons and the
other with glaciation, with the Maritime Continent operating as a switchboard [Cane and Molnar, 2001;
Molnar and Cronin, 2015]. East Africa, South Asia, and Western Australia appear to be predominantly influ-
enced by the Indian Ocean [Schott et al., 2009; Fitzsimmons et al., 2013], whereas climates around the
Pacific and Atlantic Oceans are more directly controlled by Northern Hemisphere glaciations [Haug et al.,
1999]. We suggest both climate systems are linked by the Maritime Continent. Similarly, some studies show
that a shift from warmer south Pacific to cooler north Pacific waters, associated with ongoing tectonic reor-
ganization in the Maritime Continent, contributed to Pliocene aridification in East Africa [Cane and Molnar,
2001; Karas et al., 2009; Liddy et al., 2016]. Recently, Molnar and Cronin [2015] hypothesized that emergence
of the Maritime Continent strengthened tropical atmospheric Walker circulation to foster an estimated 0.7°C
increase in the zonal SST gradient in the equatorial Pacific. Our records indicate that as Australia moved north,
it directly influenced regional and global climate through gradual tectonic uplift of the Maritime Continent.
The associated constriction of the ITF in turn impacted Australian climate and global ocean circulation. It thus
appears that Australia as it collided with the Maritime Continent became an increasingly important driver of
regional and global climate. Progressive constriction of the ITF during the Pliocene Humid Interval shifted
control over the northwest Australian climate away from the Pacific, toward the Indian Ocean during the
Arid Interval and modern times.
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