175 research outputs found

    Quality of life and clinical characteristics of self-improving congenital ichthyosis within the disease spectrum of autosomal recessive congenital ichthyosis

    Get PDF
    Background Autosomal-recessive congenital ichthyosis (ARCI) is a heterogeneous group of ichthyoses presenting at birth. Self-improving congenital ichthyosis (SICI) is a subtype of ARCI and is diagnosed when skin condition improves remarkably (within years) after birth. So far, there are sparse data on SICI and quality of life (QoL) in this ARCI subtype. This study aims to further delineate the clinical spectrum of SICI as a rather unique subtype of ARCI. Objectives This prospective study included 78 patients (median age: 15 years) with ARCI who were subdivided in SICI (n = 18) and non-SICI patients (nSICI, n = 60) by their ARCI phenotype. Methods Quality of life (QoL) was assessed using the (Children's) Dermatology Life Quality Index. Statistical analysis was performed with chi-squared and t-Tests. Results The genetically confirmed SICI patients presented causative mutations in the following genes: ALOXE3 (8/16; 50.0%), ALOX12B (6/16; 37.5%), PNPLA1 (1/16; 6.3%) and CYP4F22 (1/16; 6.3%). Hypo-/anhidrosis and insufficient vitamin D levels (<30 ng/mL) were often seen in SICI patients. Brachydactyly (a shortening of the 4th and 5th fingers) was statistically more frequent in SICI (P = 0.023) than in nSICI patients. A kink of the ear's helix was seen in half of the SICI patients and tends to occur more frequently in patients with ALOX12B mutations (P = 0.005). QoL was less impaired in patients under the age of 16, regardless of ARCI type. Conclusions SICI is an underestimated, milder clinical variant of ARCI including distinct features such as brachydactyly and kinking of the ears. Clinical experts should be aware of these features when seeing neonates with a collodion membrane. SICI patients should be regularly checked for clinical parameters such as hypo-/anhidrosis or vitamin D levels and monitored for changes in quality of life

    Meta-Analysis of Genome-Wide Association Studies and Network Analysis-Based Integration with Gene Expression Data Identify New Suggestive Loci and Unravel a Wnt-Centric Network Associated with Dupuytren’s Disease

    Get PDF
    Dupuytren´s disease, a fibromatosis of the connective tissue in the palm, is a common complex disease with a strong genetic component. Up to date nine genetic loci have been found to be associated with the disease. Six of these loci contain genes that code for Wnt signalling proteins. In spite of this striking first insight into the genetic factors in Dupuytren´s disease, much of the inherited risk in Dupuytren´s disease still needs to be discovered. The already identified loci jointly explain ~1% of the heritability in this disease. To further elucidate the genetic basis of Dupuytren´s disease, we performed a genome-wide meta-analysis combining three genome-wide association study (GWAS) data sets, comprising 1,580 cases and 4,480 controls. We corroborated all nine previously identified loci, six of these with genome-wide significance (p-value < 5x10-8). In addition, we identified 14 new suggestive loci (p-value < 10−5). Intriguingly, several of these new loci contain genes associated with Wnt signalling and therefore represent excellent candidates for replication. Next, we compared whole-transcriptome data between patient- and control-derived tissue samples and found the Wnt/β-catenin pathway to be the top deregulated pathway in patient samples. We then conducted network and pathway analyses in order to identify protein networks that are enriched for genes highlighted in the GWAS meta-analysis and expression data sets. We found further evidence that the Wnt signalling pathways in conjunction with other pathways may play a critical role in Dupuytren´s disease

    Gorab is a Golgi protein required for structure and duplication of Drosophila centrioles.

    Get PDF
    We demonstrate that a Drosophila Golgi protein, Gorab, is present not only in the trans-Golgi but also in the centriole cartwheel where, complexed to Sas6, it is required for centriole duplication. In addition to centriole defects, flies lacking Gorab are uncoordinated due to defects in sensory cilia, which lose their nine-fold symmetry. We demonstrate the separation of centriole and Golgi functions of Drosophila Gorab in two ways: first, we have created Gorab variants that are unable to localize to trans-Golgi but can still rescue the centriole and cilia defects of gorab null flies; second, we show that expression of C-terminally tagged Gorab disrupts Golgi functions in cytokinesis of male meiosis, a dominant phenotype overcome by mutations preventing Golgi targeting. Our findings suggest that during animal evolution, a Golgi protein has arisen with a second, apparently independent, role in centriole duplication.D.M.G. is grateful for a Wellcome Investigator Award, which supported this work. The study was initiated with support from Cancer Research UK

    Periodontal Ehlers-Danlos Syndrome Is Caused by Mutations in C1R and C1S, which Encode Subcomponents C1r and C1s of Complement

    Get PDF
    Periodontal Ehlers-Danlos syndrome (pEDS) is an autosomal-dominant disorder characterized by early-onset periodontitis leading to premature loss of teeth, joint hypermobility, and mild skin findings. A locus was mapped to an approximately 5.8 Mb region at 12p13.1 but no candidate gene was identified. In an international consortium we recruited 19 independent families comprising 107 individuals with pEDS to identify the locus, characterize the clinical details in those with defined genetic causes, and try to understand the physiological basis of the condition. In 17 of these families, we identified heterozygous missense or in-frame insertion/deletion mutations in C1R (15 families) or C1S (2 families), contiguous genes in the mapped locus that encode subunits C1r and C1s of the first component of the classical complement pathway. These two proteins form a heterotetramer that then combines with six C1q subunits. Pathogenic variants involve the subunit interfaces or inter-domain hinges of C1r and C1s and are associated with intracellular retention and mild endoplasmic reticulum enlargement. Clinical features of affected individuals in these families include rapidly progressing periodontitis with onset in the teens or childhood, a previously unrecognized lack of attached gingiva, pretibial hyperpigmentation, skin and vascular fragility, easy bruising, and variable musculoskeletal symptoms. Our findings open a connection between the inflammatory classical complement pathway and connective tissue homeostasis

    Clinical and Genetic Advances in Paget’s Disease of Bone: a Review

    Get PDF

    BioMAX the first macromolecular crystallography beamline at MAX IV Laboratory

    Get PDF
    BioMAX is the first macromolecular crystallography beamline at the MAX IV Laboratory 3 GeV storage ring, which is the first operational multi bend achromat storage ring. Due to the low emittance storage ring, BioMAX has a parallel, high intensity X ray beam, even when focused down to 20 mm 5 mm using the bendable focusing mirrors. The beam is tunable in the energy range 5 25 keV using the in vacuum undulator and the horizontally deflecting doublecrystal monochromator. BioMAX is equipped with an MD3 diffractometer, an ISARA high capacity sample changer and an EIGER 16M hybrid pixel detector. Data collection at BioMAX is controlled using the newly developed MXCuBE3 graphical user interface, and sample tracking is handled by ISPyB. The computing infrastructure includes data storage and processing both at MAX IV and the Lund University supercomputing center LUNARC. With state of the art instrumentation, a high degree of automation, a user friendly control system interface and remote operation, BioMAX provides an excellent facility for most macromolecular crystallography experiments. Serial crystallography using either a high viscosity extruder injector or the MD3 as a fixedtarget scanner is already implemented. The serial crystallography activities at MAX IV Laboratory will be further developed at the microfocus beamline MicroMAX, when it comes into operation in 2022. MicroMAX will have a 1 mm x 1 mm beam focus and a flux up to 10 15 photons s 1 with main applications in serial crystallography, room temperature structure determinations and time resolved experiment
    corecore