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REVIEW PAPER

Clinical and Genetic Advances in Paget’s Disease
of Bone: a Review

N. Alonso1 & I. Calero-Paniagua2 & J. del Pino-Montes3,4

# The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract Paget’s disease of bone (PDB) is the second most
common metabolic bone disorder, after osteoporosis. It is
characterised by focal areas of increased and disorganised
bone turnover, coupled with increased bone formation. This
disease usually appears in the late stages of life, being slightly
more frequent in men than in women. It has been reported
worldwide, but primarily affects individuals of British de-
scent. Majority of PDB patients are asymptomatic, but clinical
manifestations include pain, bone deformity and complica-
tions, like pathological fractures and deafness. The causes of
the disease are poorly understood and it is considered as a
complex trait, combining genetic predisposition with environ-
mental factors. Linkage analysis identified SQSTM1, at chro-
mosome 5q35, as directly related to the disease. A number of
mutations in this gene have been reported, pP392L being the
most common variant among different populations. Most of
these variants affect the ubiquitin-associated (UBA) domain
of the protein, which is involved in autophagy processes.
Genome-wide association studies enlarged the number of loci
associated with PDB, and further fine-mapping studies, com-
bined with functional analysis, identified OPTN and RIN3 as

causal genes for Paget’s disease. A combination of risk alleles
identified by genome-wide association studies led to the de-
velopment of a score to predict disease severity, which could
improve the management of the disease. Further studies need
to be conducted to elucidate other important aspects of the
trait, such as its focal nature and the epidemiological changes
found in some populations. In this review, we summarize the
clinical characteristics of the disease and the latest genetic
advances to identify susceptibility genes. We also list current
available treatments and prospective options.

Keywords Paget’s disease of bone . SQSTM1mutations .

GWAS . Susceptibility genes . ZiPP study

Introduction

Paget’s disease of bone (PDB) is a chronic disorder character-
ized by focal or multifocal remodelling and disorganized bone
structure [1]. It was firstly described as Bosteitis deformans^
by Sir James Paget in 1876, prior to the discovery of the X-ray
[2]. Nowadays, it is considered a common skeletal condition,
representing the most frequent metabolic bone disorder after
osteoporosis.

Epidemiology

PDB appears usually after the age of 40, being slightly more
common in men than in women [1, 3]. It has been described
almost worldwide, with an irregular geographical distribution
[4]. It primarily affects patients of British descent, being com-
mon (around 4%) in England [1], areas of Australia, New
Zealand [5] and North America [6] and rare (less than 1‰)
in Asia, Scandinavia and Africa [7].
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Marked differences in prevalence have been found not only
among countries but also between areas within the same coun-
try [8]. Some regions show a high prevalence of the disease,
like the Lancashire focus in UK, with a prevalence of 7% in
the population over 55 years [9] and the Vitigudino-
Salamanca region in Spain, with a 5.7% prevalence [10].

Several studies suggest that the prevalence and severity of
PDB are declining in most but not all of the studied countries
[4, 8, 11, 12]. Although the cause of this reduction is not
completely understood, environmental changes, such as dif-
ferent migratory patterns, improved diet, sedentary lifestyle
and decrease in the exposure to viral infections and zoonoses,
might play a role [4].

Clinical Manifestations

PDB may have a long asymptomatic phase and up to 70% of
patients do not present any symptom throughout disease evo-
lution [13].

Clinical manifestations of PDB are pain, bone deformity
and features caused by complications, including pathological
fractures and deafness [14]. Pain is probably the most com-
mon symptom and can be differentiated into primary or sec-
ondary. Primary pain is described as dull, deep and predomi-
nantly nocturnal. Pain secondary to complications is more
frequent than primary pain, especially due to the neurological
entrapment or joint deformities [15].

PDB is most commonly located in the pelvis (58–80%),
spine (40%), femur (32%) and tibia (16–20%) [16]. In some
cases, disease limits to a single bone (monostotic disease),
although it often affects several noncontiguous bones
(polyostotic disease) [17]. Long bones might bend as a result
of the increased bone volume and malleability. Some patients
also show skull enlargement and facial deformities, which can
transform their physical appearance [14].

The most common complications of PDB comprise ar-
thropathy secondary to an alteration of the subchondral bone,
fractures, neurologic compression secondary to bone growth,
neurologic dysfunction possibly secondary to vascular steal
syndrome, bone hypervascularisation, which may be accom-
panied by an increased focal heat in the superficial bones as
the tibia [18], high output congestive heart failure, hypercal-
cemia and hypercalciuria in immobilized patients and the tu-
mour transformation of the pagetic bone, commonly into os-
teosarcoma [19, 20].

Pathology

PDB manifests with a marked increase in bone turnover,
which leads to a larger bone volume [21]. Osteoclasts are
mainly affected, experimenting an increase in number and size

and containing more nuclei than normal osteoclasts. This re-
sults in an elevated metabolic osteolytic activity, coupled with
increased bone formation by osteoblasts, which are apparently
normal [22].

The pagetic bone lesion could be identified in radiographs
as a lytic lesion at the first stage (osteolytic pagetic phase).
Then, lesions evolve into a mixture of sclerosis, due to new
bone formation by osteoblasts, and osteolysis (mixed phase).
In the final stages, sclerotic bone is observed, due to a reduc-
tion in bone turnover and cells [23]. Different radiographic
patterns could be observed in each stage (Table 1) [24].

Bone turnover is greatly accelerated in the pagetic bone.
Therefore, new collagen fibres are placed in a chaotic fashion,
unlike the laminar distribution of the adult mature bone. This
results in the characteristic mosaic pattern of the pagetic bone,
combining an abnormal woven bone, with some areas of la-
mellar bone, and numerous disorganized cement lines from
previous osteolytic phases [25]. In the matrix, the osteoid vol-
ume is increased in thickness, but usually without mineraliza-
tion alterations. The increase in bone turnover leads to an
increased number of trabeculae, as it has been described in
biopsies from the iliac crest. Numerous connective tissue fi-
bres and hypervascularity are observed in the bone marrow.
All the above-mentioned changes induce mechanical tissue
modifications that facilitate the bowing deformities and
cracks; however, a lower mineralization rate and loss of
aligned haversian structures may partly compensate these
changes, maintaining resistance to crack growth [26].

Diagnosis

A diagnosis of PDB is incidental in most cases, when an
elevated level of alkaline phosphatase is detected in the ab-
sence of liver disease in analyses that were performed for
various reasons or the presence of suggestive radiographic
changes ordered by other medical problems [16].

Elevation of bone turnover markers reflects changes in
bone metabolism. Due to its wide availability, low variability
and price, total alkaline phosphatase (ALP) is the most extend-
ed marker for PDB activity. A recent meta-analysis suggests
that this activity is better monitored by following procollagen
type 1 amino-terminal propeptide (P1NP) levels, considering
ALP, bone-specific alkaline phosphatase (bone ALP), and C-
terminal telopeptide (CTX) as good alternative markers for
disease activity in untreated patients, or when P1NP is not
available [27].

Plain radiography is often the basis for diagnosis as its
features are easily recognizable. The injury does not usually
affect the entire bone and the border between healthy and
disease areas appears as a lytic image (blade of grass, or candle
flame sign in the shaft of long bones (Table 1)). Computed
tomography, magnetic resonance and positron emission
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tomography images may be useful to detect suspected sarco-
matous degeneration [28].

Tc-99 bone scan provides images of increased uptake in
areas of increased vascularity and osteoblastic activity.
Although it is unspecific, it has a high sensitivity to detect
lesions, even at the very early stages of PDB that are still not
visible on X-ray [29].

Bone biopsy is rarely required for diagnosis, but it may be
useful for tumour differential diagnosis. The most character-
istic findings are the presence of abnormal trabeculae, irregu-
lar cementation lines with a typical Bmosaic^ image, increase
in vascularity and increased number and size of osteoclasts
[21].

Aetiology

The causes of PDB are not well understood and controversies
arise with regard to its aetiology [30]. It is considered a com-
plex, multifactorial disease, as a result of a synergistic action
between environmental and genetic factors. At an early age,
osteoclast precursors could be sensitized by an unknown en-
vironmental factor. The genetic conditioning would explain
individual susceptibility to finally develop the disease years
later [30, 31].

Genetic Predisposition

PDB shows a strong genetic compound. It has been identified
in families since 1883 [32] and it is shown that up to 40% of
individuals with PDB have affected relatives [33–36]. It is an

autosomal dominant condition [36–38] which appears more
commonly in first-degree relatives of affected patients [35].

The first genetic approach to identify the causal gene for
PDB was performed in a French-Canadian cohort including
11 families with PDB. Linkage analysis identified the 5q35
locus as associated with the disease (LOD score 3.0) [38].
Subsequent studies isolated sequestosome 1 (SQSTM1) as
the candidate gene for this locus [39].

In total, seven loci have been associated by linkage analysis
with the appearance of classical PDB: 6p21.3 (PDB1 locus)
[40, 41], 18q21-22 (PDB2) [42–45], 5q35 (PDB3) [37–39],
5q31 (PDB4) [38], 2q36 (PDB5) [37], 10p13 (PDB6) [37]
and 18q23 (PDB7) [46]. The former locus was also associated
to rare bone dysplasia familial expansile osteolysis, a rare
condition that shares some features with PDB [37].

SQSTM1 Mutations

SQSTM1 gene maps to chromosome 5q35 and contains eight
exons. It encodes p62 protein, a 62-kDa scaffolding protein
with three functional regions: an N-terminal region which in-
teracts with kinases, a hinge region and a C-terminal area
containing the ubiquitin-binding domain (UBA domain). It
targets proteins for degradation through the proteasome path-
way [47] and mediates the formation of autophagosome by
interacting with LC3 protein [48, 49]. SQSTM1 is also impor-
tant for bone metabolism, since it is involved in the transduc-
tion of the NF-κB pathway, which is key in osteoclast differ-
entiation and function [50].

Germline mutations in SQSTM1 have been found in ~40%
of the PDB familial cases and in 10% of sporadic cases [39,

Table 1 Radiographic changes
appearing in each phase of the
pagetic lesion

Phase Radiographic findings

Osteolytic Osteoporosis circumscripta in skull

Blade of grass or candle flame signs in long bones

Mixed Coarsened trabeculae and bony enlargement mixed with osteolytic zones

Cotton wool appearance of the skull

Diploic space widening (inner and outer calvaria tables)

Vertebral frame sign

Squaring of vertebrae

Coarse vertebral trabecular thickening

Ivory vertebrae

Enlargement of the pubic rami and ischium

Sclerotic Frontal bone enlargement

Cortical thickening and sclerosis of the iliopectineal and ischiopubic lines

Acetabular protrusio

Lateral curvature of the femur

Anterior curvature of the tibia

Looser zones

Banana and chalk transverse fracture in long bones
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51]. p.P392L variant was the first SQTM1mutation associated
with PDB. It has been shown that p.P392 mutation is suffi-
cient to cause PDB in mice, by altering autophagy in osteo-
clasts [52]. It was initially identified in 46% of familial cases
and in 16% of sporadic patients of French-Canadian ascen-
dency [39]. Similarly, it was identified in 19% of familial and
8.9% of sporadic cases in British patients [51], as well as in the
Belgian [53], Italian [54] and American populations [55]
(Table 2). This mutation was also commonly detected in the
Chinese population, where the appearance of Paget’s disease
is rare. Reported cases in this population showed similar de-
mographic and clinical features than in Caucasian patients
[56, 57]. The above findings suggest that p.P392L is a muta-
tion hotspot. Several other hotspots have been identified in the
protein, mainly in the UBA domain [58–61].

To date, 28 different mutations in SQSTM1 have been
reported, producing 21 aminoacid substitutions and various
truncating mutations affecting the UBA domain of the protein
(Table 2). Patients with truncating mutations showed a more
severe phenotype than the individuals with missense muta-
tions [61, 62]. Most of the patients present a single mutation
in the gene, although several cases have been identified with
compound heterozygous mutations [35, 58, 63] and homozy-
gous p.P392L [34].

Only four mutations were identified out of the UBA
domain of SQSTM1 (Table 2) [58–61]. These mutations,
like p.S349T, also increase NF-κB signalling [61]. This
occurs through the reduction in binding SQSTM1 to
Keap1, which reduces the activity of Nrf2. Alteration of
the Nrf2 function could produce an increase in the oxida-
tive response genes, contributing to the appearance of PDB.
Loss of Nrf2 in vivo negatively affects osteoblast differen-
tiation and matrix formation, and it has been proposed that
mutations in SQSTM1 could produce alterations in bone
remodelling as seen in PDB patients through altering the
Nrf2 cellular activity [64].

It is known that PDB is a focal disease showing asymmetric
distribution, however, the cause is still unknown. It has been
hypothesised that somatic mutations at the early stage of the
zygote could be responsible for the mosaicism detected in the
patients. Consistently, several studies found p.P392L variant
as a somatic mutation in SQSTM1 in the affected bones from
two unrelated patients, but not in peripheral blood [65], or
restricted to monocytes [66].

Mutations in SQSTM1 have also been reported in other
diseases, like amyotrophic lateral sclerosis, in cohorts with
familiar, sporadic and frontotemporal dementia—ALS, from
Europe, the USA and Japan [67–71]. Among the rare or novel
coding mutations found, some of them pathogenic,
p.Pro392Leu and p.Glu155Lys, were also identified. The pa-
tient carrying p.P392L mutation developed Paget’s disease, as
well as the father of the proband carrying p.Glu155Lys muta-
tion [71].

Genome-Wide Association Studies (GWAS)

SQSTM1mutations have been found in only 20–50% of PDB
patients, therefore high-throughput screening techniques, like
genome-wide association studies, were used to identify un-
known candidate genes [72, 73]. An initial study carried out
by Albagha et al. analysed 1250 SQSTM1-ve cases and 1537
controls and identified six SNPs in chromosomes 1, 10 and 18
associated with the disease (p values ranging from 1.86e-11 to
5.38e-24) (Table 2) [74]. Risk allele carriers have ~70% of
increase in predisposition to develop the disease [74].

Chromosome 1p13 highlighted a recombination area
where only CSF1 gene was located. This gene encodes M-
CSF, the macrophage colony-stimulating factor, involved in
osteoclast formation and survival [75, 76]. An increase in
serum M-CSF has been detected in patients with PDB [77].
The causal variants in this gene that predispose to PDB remain
unknown, but it is suggested that they could induce PDB by
increasing osteoclast formation, via CSF1 activity [78].

Individuals carrying the risk allele of SNP rs1561570,
located in chromosome 10p13, showed an increase of
~60% in developing the disease [74]. This region has been
previously detected by linkage analysis, defined as PDB6
locus [37], but the causal gene was not isolated. GWAS
allowed to identi fy a recombination area where
Optineurin (OPTN) gene is located. OPTN plays a role in
glaucoma [79], but no function has been previously
reported in bone metabolism.

Chromosome 18q21.33 corresponds to PDB7 locus, previ-
ously identified in some families by linkage analysis [46]. Top
GWAS SNPs were located in an intergenic region close to
TNFRSF11A gene. It encodes RANK, a receptor protein for
RANKL which activates NF-κB signalling. RANK is a key
protein for osteoclast differentiation and function, and its dis-
ruption leads to an osteopetrotic phenotype in mice [80].
Recent studies have shown that genetic variability of genes
such as TNFRSF11A/RANK could increase the severity of the
disease in patients carrying a mutation in SQSTM1 [81]. Other
syndromes with similar clinical characteristics as PDB were
also associated with mutations in RANK gene, like familial
expansile osteolysis, early-onset familial PDB and expansile
skeletal hyperphosphatasia [44, 45, 82].

Enlarged GWAS analysis in 2223 SQSTM1-ve PDB cases
and 4601 controls confirmed the previousGWAS findings and
identified four novel signals in chromosomes 7, 8, 14 and 15
(Table 2) [73]. The strongest signal at 7q33 was driven by
rs4294134 variant, located in an intronic region of NUP205
gene. It encodes nucleoporin 205 kDa, a component of the
nuclear pore involved in transport processes [83]. However,
its role in the bone is still unknown.

The signal on chromosome 8q22.3 appointed to an 18-kb
LD block covering the whole transmembrane 7 superfamily
member 4 (TM7SF4) gene. This gene encodes DC-STAMP
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Table 2 SQSTM1 mutations identified in patients with classical PDB

Gene Mutation Protein
change

Domain
affected

Population Ref

SQSTM1 T1046A D335E – Italian Falchetti et al., 2009 [59]

T1085A S349 T KIR American (German descent) Michou et al., 2011 [60]

C1090T P364S P2 Australian Rea et al., 2009 [61]

A1132T K378X – Australian Rea et al., 2006 [132]

C1182T A381V – Italian Falchetti et al., 2009 [59]

C1190A Y383X – Italian Gennari et al., 2010 [133]

C1200T P387L UBA USA (mixed European descent), Italian Johnson-Pais et al., 2003 [55], Longato et al., 2014
[134]

G1205C E389Q UBA American Beyens et al., 2006 [104]

C1209T A390V UBA Italian American Michou et al., 2011 [60]

IVS7+
1G>A

A390X UBA French Collet et al., 2007 [58]

C1215T P392L UBA French-Canadian, Italian, New Zealand,
USA (mixed European descent), British,
Netherlands, Australian, Chinese,
Polish-American, Irish-Italian,
African-American

Laurin et al., 2002 [39]; Falchetti et al., 2004 [54];
Cundy et al., 2011 [135]; Johnson-Pais et al.,
2003 [55]; Hocking et al., 2002 [51]; Eekhoff
et al., 2004 [35]; Good et al., 2004 [136]; Gu
et al. 2012 [56]; Michou et al., 2011 [60]

1210delT L394X UBA USA (mixed European descent) Johnson-Pais et al., 2003 [55]

1225insT E396X UBA British, Australian, New Zealand Hocking et al., 2002 [51]; Rea et al., 2006 [132];
Cundy et al., 2015 [117]

T1229G S397A UBA Italian Falchetti et al., 2009 [59]

T1235C S399P UBA Netherlands Eekhoff et al., 2004 [35]

C1238T Q400X UBA British Visconti et al., 2010 [63]

A1241G M401V UBA Italian Gennari et al., 2010 [133]

A1250G M404V UBA Italian, British Falchetti et al., 2004 [54]; Hocking et al., 2004 [62]

T1251C M404T UBA Netherlands Eekhoff et al., 2004 [35]

G1271A G411S UBA British Hocking et al., 2004 [62]

C1277T L413F UBA French Collet et al., 2007 [58]

T1290A L417Q UBA American (Russian Jewish ancestry) Michou et al., 2011 [60]

1307insT D423X UBA Italian Falchetti et al., 2009 [59]

T1311G I424S UBA British Visconti et al., 2010 [63]

G1312A G425E UBA Italian, Netherlands Gennari et al., 2010 [133]; Eekhoff et al., 2004 [35]

G1313A G425R UBA Italian Falchetti et al., 2004 [54]

unknown A426V UBA unknown Rea et al., 2013 [137]a

C1320A A427D UBA Italian, British Gennari et al., 2010 [133]; Goode et al., 2014 [138]

1p13.3 (CSF1) rs10494112 Intergenic – British, Australian, New Zealand, Italian,
Spanish

Albagha et al., 2010 [74]

rs499345 Intergenic – British, Australian, New Zealand, Italian,
Spanish

Albagha et al., 2010 [74]

rs484959 Intergenic – British, Australian, New Zealand, Italian,
Spanish

Albagha et al., 2010 [74]

18q21.33
(TNSFR-
F11A)

rs2957128 Intergenic – British, Australian, New Zealand, Italian,
Spanish

Albagha et al., 2010 [74]

rs3018362 Intergenic – British, Australian, New Zealand, Italian,
Spanish

Albagha et al., 2010 [74]

OPTN rs1561570 Intronic – British, Australian, New Zealand, Italian,
Spanish

Albagha et al., 2010 [74], Obaid et al., 2015 [91]

7q33
(NUP205)

rs4294134 Intronic – British, Australian, New Zealand, Italian,
Spanish, Belgian, Dutch

Albagha et al., 2011 [73]

15q24.1 rs5742915 p.F645L – Albagha et al., 2011 [73]
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protein, involved in the fusion of osteoclasts precursors to
form mature osteoclasts [84]. Expression of DC-STAMP is
essential for osteoclast formation [85]. Genetic variants pre-
disposing to PDB could enhance the expression of DC-
STAMP, to generate the large multinucleated pagetic osteo-
clasts [73].

SNP on chromosome 14q32.12 also appoints to a novel
gene in PDB, RIN3 [73]. It encodes Ras and Rab interactor
3, involved in vesicular trafficking [86, 87]. Its functionality
and association with PDB is discussed in BNovel genes asso-
ciated with PDB^.

Chromosome 15q24.1 also constitutes a new susceptibility
locus for PDB. Rs5742915, a missense change (p.Phe645Leu)
of promyelocytic leukaemia gene (PML), showed the highest
association [73]. This gene is involved in TGF-β signalling
and involved in the regulation of bone remodelling [88].
GOLGA6A gene, a member of the golgin family, is located
in the same area and could not be completely discarded. Its

role in bone metabolism is unknown, but mutations in other
members of the same family produce a severe form of osteo-
porosis [89] and lethal skeletal dysplasia [90].

Novel Genes Associated with PDB

Genome-wide association studies allowed to identify most of
the genetic loci involved in the development of the disease. To
date, only two GWAS regions have been studied in detail:
chromosome 10p13 (OPTN gene) [91] and chromosome
14q32.12 (RIN3 gene) [31].

Chromosome 10p13 highlights Optineurin gene, involved
in NF-κB signalling regulation [92], autophagy and immunity
[93]. SNP rs1561570 was the strongest signal in GWAS for
this locus (p value = 4.37e-38, OR = 1.67 [1.54–1.810]) and
was an expression quantitative trait locus (eQTL), reducing
the levels of OPTN in T-allele carriers [91]. Mouse knock-
down model for optn showed that the gene acts as a negative

Table 2 (continued)

Gene Mutation Protein
change

Domain
affected

Population Ref

(PML) British, Australian, New Zealand, Italian,
Spanish, Belgian, Dutch

8q22.3
(DC-STAMP)

rs2458413 Intronic – British, Australian, New Zealand, Italian,
Spanish, Belgian, Dutch

Albagha et al., 2011 [73]

TM7SF4 C1189T L397F – French-Canadian Beauregard et al., 2014

CTHRC1 372+
259A>G

Intronic – French-Canadian Beauregard et al., 2014

RIN3 1-926A>G Promoter – British Vallet et al., 2015 [31]

-21C>A 5’UTR – British Vallet et al., 2015 [31]

C422T A141V SH2 British Vallet et al., 2015 [31]

C691T R231C – British Vallet et al., 2015 [31]

C751A Q251K Pro-rich British Vallet et al., 2015 [31]

C835T R279C Pro-rich British Vallet et al., 2015 [31]

T866C L289P Pro-rich British Vallet et al., 2015 [31]

T874C C292R Pro-rich British Vallet et al., 2015 [31]

C880T P294S Pro-rich British Vallet et al., 2015 [31]

G916C A306T Pro-rich British Vallet et al., 2015 [31]

C1156T P386S Pro-rich British Vallet et al., 2015 [31]

G1280A R427Q Pro-rich British Vallet et al., 2015 [31]

C1429T P477S Pro-rich British Vallet et al., 2015 [31]

G1838C G613A VPS9 British Vallet et al., 2015 [31]

G2311A D771N VPS9 British Vallet et al., 2015 [31]

T2377T Y793H VPS9 British Vallet et al., 2015 [31]

ATG16L1 A898G T300A – Spanish Usategui-Martin et al., 2015 [102]

ATG5 rs2245214 Intronic – Spanish Usategui-Martin et al., 2015 [102]

ATG10 C635T T212M – Spanish Usategui-Martin et al., 2015 [102]

ZNF687 C2810G P937R – Italian and multiethnic American Divisato et al., 2016 [115]

aMutation reported in a review. The original research article was not found
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regulator of osteoclast differentiation in vitro [91].
OptnD477N/D477N knockout mice formed more
hypernucleated osteoclasts compared to the wild type.
Osteoblasts from these mice showed a reduction in their role
to promote osteoclast differentiation. Osteoclast results were
supported in vivo. An increase in bone resorption in these
mice is thought to be coupled with an increase in bone forma-
tion, therefore, no bone loss was found. After RANKL stim-
ulation, an increase in NF-κB activation was detected in these
mice. The inhibitory effect of Optn on osteoclasts is mediated
by a CYLD-dependent pathway, which is important for the
inhibition of NF-κB activation. Optn also inhibits osteoclast
differentiation by modulating INF-β signalling pathway.
Knockdown and Knockout Optn mice showed enhanced os-
teoclast differentiation. Rs1561570 SNP in Optn gene in-
creases susceptibility to PDB by reducing OPTN expression
[91].

Chromosome 14q32.12 was strongly associated to PDB
(p value = 2.55e-11, OR = 1.44 [1.29–1.60]) in the
European population, appointing to Ras and Rab
interactor 3 (RIN3) as the causal gene, since small
GTPases, like Ras and Rab, are important for osteoclast
function [94, 95], and molecules involved in vesicular
trafficking cause syndromes with PDB-like characteris-
tics, namely inclusion body myopathy with early onset
Paget’s disease and frontotemporal dementia [96]. Deep
sequencing of the 14q32 locus in 121 PDB patients and
49 controls from the UK identified p.R279C, in strong LD
with the GWAS signal rs10498635, as the most probable
causal variant for this locus (p value = 1.4e-9, OR = 0.64
[0.55–0.74]). Two other common RIN3 variants (p.H215R
and p.T425M) were also detected, but association was
inconclusive. In addition, 13 rare missense variants were
identified in these patients, affecting either the structured
domains (SH2 and VSP9) or the proline-rich domain
(Table 2). A combination of these rare variants was asso-
ciated with an increased risk of presenting the disease
[31]. Analysis of mouse tissues showed that RIN3 ex-
presses higher in the lung, followed by bone tissue, with
a tenfold expression in osteoclasts compared with that in
osteoblasts. These findings suggest that RIN3 could be
involved in the pathogenesis of PDB by affecting the os-
teoclast function in these patients [31].

A missense variant (L408P) in CSF1 gene was detected in
a 30-year-old patient with juvenile Paget’s disease, a rare
PDB-like syndrome appearing in early stages of life [97].
The patient also carried a missense variant D349G in
TMSF4 gene. A rare variant (allele frequency < 0.05)
rs62620995 in TM7SF4 gene was identified in a French-
Canadian cohort of PDB patients, together with rs62641691
variant in CD276 (Table 2) [98]. Rs62620995 (p.Leu397Phe)
could increase the activity of DC-STAMP, altering its expres-
sion or its internalization [99].

Other Factors

SQSTM1 protein directs ubiquitinated molecules to degrada-
tion in autophagolysosomes. It interacts with autophagy pro-
tein LC3, located in the ruffle border of the osteoclasts [48].
Besides, other autophagy proteins regulate osteoclastic bone
resorption (ATG5, ATG7 and ATG4B), although the
SQSTM1-mediated autophagy role in osteoclasts remains to
be confirmed [100]. Alterations in autophagosomes have been
found in other diseases with a pagetic component, such as
inclusion bodymyopathy, PDB and FTD, linked to a mutation
in the VCP gene [101]. Analysis of a Spanish cohort of 238
PDB patients showed that polymorphisms in genes associated
with autophagosome formation, ATG16L1 and ATG5, were
linked to an increased risk of developing PDB, whilst a poly-
morphism in ATG10 decreased the risk of suffering the con-
dition (Table 2) [102].

Splicing site mutation in SQSTM1 have been reported [103,
104] and alternative splicing has been involved in the devel-
opment of bone diseases, such as TCIRG1-linked autosomal
recessive osteopetrosis [105]. Alternative splicing in six genes
(LGALS8, RHOT1, CASC4,USP4, TBC1D25 and PIDD), not
previously associated with the disease, but associated with
TRAF6 ubiquitination [106], apoptosis [107–110] and
autophagosome maturation [111], have been associated with
PDB.

Genetics of PDB Severity

Results from the genome-wide association analysis helped to
build up a risk allele score for severity of disease. In patients
without SQSTM1 mutations, a combination of risk GWAS
alleles in the highest tertile was associatedwith a 27% increase
in disease extent, defined by the number of affected bones,
and 25% increase in disease severity score, which includes
complications secondary to the disease. SQSTM1+ve patients
showed a highly significant increase in disease extent, severity
and number of previous treatments received [112].

In a reduced number of cases, neoplastic transformation
appears in the pagetic bones, producing osteosarcoma or,
even less frequently, giant cell tumours [113, 114]. This is
a serious condition since about 80% of patients diagnosed
with GCT die in 10-year time. Analysis of a large family
with 14 members affected by PDB, SQSTM1-ve, and four of
them presenting giant cell tumours identified a heterozy-
gous missense mutation in the ZNF687 gene (p.P937R) in
all unrelated PDB patients and replicated in two families
with PDB history. This variation was identified as a founder
mutation since it originated from a unique haplotype and
segregated in all but one GCT/PDB-affected individual in
the study. These results confirmed that p.P937R is neces-
sary and sufficient for the development of GCT in PBD
patients. Authors also found a small group of familial
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PDB patients carrying this mutation, associated with a more
severe phenotype than PDB patients without the mutation,
with a polyostotic disease and earlier onset of disease.
ZNF687 encodes a C2H2 zinc finger protein involved in
the transcriptional regulator complex Z3. It is widely
expressed, including in the bone, where it is upregulated
in osteoclast and osteoblast differentiation in zebrafish
model. This gene is located downstream of NF-kB.
Mutation p.P937R is a gain-of-function change, producing
an accumulation of the protein in the nucleus and subse-
quent transcription of the pathway downstream. Osteoclast
derived from patients carrying this mutation presented an
increased size and number of nuclei [115].

Environmental Triggers

Genetic predisposition plays a crucial role in the develop-
ment of PDB; however, some studies have found that
children whose parents carry SQSTM1 mutations do not
always develop the disease, or they present a large delay
in the appearance of the symptoms [34, 116, 117].
Similarly, mice expressing pP392L SQSTM1 mutation
showed an increased number of osteoclasts and progres-
sive bone loss, but osteoblasts were not increased and,
therefore, did not present any visible pagetic lesion
[118]. These findings, together with the reported changes
in the incidence of PDB, support the role of environmen-
tal factors in the development of the disease. A persistent
viral infection was proposed after observing intracellular
inclusions in osteoclasts, similar to measles nucleocapsids
(MVNP) [119, 120]. The nature of these bodies is still
controversial, since some groups have not found any con-
nexion [121]. It has been suggested lately that they could
be protein aggregates resulting from the dysregulation of
the autophagy system [122, 123]. However, recent studies
have shown that the MVNP protein is associated with the
upregulation of IL-6 and IGF1 in osteoclasts from mouse
models and PDB patients, which could suggest a role for
measles virus in the alteration of bone formation seen in
these patients [124, 125].

PDB has also been linked to other factors such as poor
calcium and vitamin D intake, consumption of uncontrolled
beef meat during childhood [126], consumption of not puri-
fied water [10], contact with dogs during early years [127], an
excessive mechanical loading on the skeleton and exposure to
some environmental toxics [128].

Treatment

The main and the only absolute indication for treatment with
clear clinical evidence of PDB is pain in the affected bone
[29]. In several clinical trials, bisphosphonates were effective

in managing pain in PDB patients. Zoledronic acid is the most
potent drug and is currently the first choice of treatment [129].
Calcitonin is effective in reducing pain and expression of bone
formation and resorption markers, although its power is clear-
ly lower than that of bisphosphonates; thus, it is rarely used
nowadays [130]. Denosumab is a potent inhibitor of bone
resorption and has been reported to decrease disease activity
in one PDB patient [131], but it has not been tested yet in
clinical trials for PDB. Orthopaedic surgery is recommended
mainly for bone pagetic fractures, spinal stenosis or pagetic
osteoarthritis.

Treatment of PDB patients showing only biochemical ac-
tivity but no pain is under debate. To date, there is not enough
evidence on preventive treatment of complications in asymp-
tomatic patients. The PRISM trial and its extension showed no
beneficial effect on the quality of life, fractures, orthopaedic
surgery or deafness in patients treated repeatedly with
bisphosphonates [33]. An international randomized clinical
trial led by Prof Stuart Ralston, at the University of
Edinburgh, UK (Zoledronate in the prevention of Paget’s:
the ZiPP study, ISRCTN11616770) is currently in progress
to detect the effect of bisphosphonate treatment in
SQSTM1+ve individuals who have not developed any
symptom.

Conclusion

Paget’s disease of bone is a common disorder resulting from
a combination of genetic and environmental factors. To
date, clinical, laboratory or radiographic features have been
used to identify the disease and provide treatment, although
the guidelines to prescribe zoledronic acid are still under
debate.

SQSTM1 mutations are associated with susceptibility to
develop PDB. However, only 40% of familial PDB and 10%
of sporadic PDB patients present alterations in this gene.
Latest advances in the genetics field identified seven other
genes predisposing to the disease. It has been shown that
genetic information may constitute a good tool to manage
presymptomatic patients. A risk allele score has been devel-
oped using the information from all PDB loci, to success-
fully detect an accumulative risk to develop a more severe
disease when carrying a large number of risk alleles. In
addition, forthcoming results from the ZiPP study will be
crucial to determine prophylactic treatment based on genet-
ic profiling may contribute to prevent skeletal complica-
tions associated with PDB.

However, despite the great genetic advances, further re-
search is needed to elucidate other aspects of the disease,
including its focal nature, and the changes in severity and
prevalence observed in some populations.
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