49 research outputs found

    Use of environmental isotopes to assess the sustainability of intensively exploited aquifer systems (2012‐2015)

    Get PDF
    Intensive exploitation of groundwater over longer period has led, in many important aquifers, to marked lowering of water tables, increasing exploitation costs, and often, to a progressive deterioration of water quality. Concentrated pumping may also alter flow patterns permanently with the risk of migration of pollutants into aquifers from the surrounding aquifers or surface water bodies due to lack of physical protection to prevent them. Isotope hydrology tools have proven to be very useful in assessing groundwater hydrology, addressing aspects related to recharge processes, delineation of flow patterns, water quality issues and interactions with other water bodies; this unique information can be further used to evaluate long term aquifer sustainability. The objective of the Coordinated Research Project F33019 is to develop and review approaches and methodologies, mostly based on the combined use of conventional hydrogeological techniques and environmental isotopes, to assess the response of groundwater systems to intensive exploitation and groundwater availability. Access to new dating tools and approaches for groundwater dating covering different time scales offers the possibility to evaluate changes in groundwater dynamics and flow patterns, providing key data to predict the evolution of aquifers and their sustainability as major sources of water. The CRP aims to assess the performance of these new tools and approaches and the possible adoption of these methods by water management experts

    The great melting pot. Common sole population connectivity assessed by otolith and water fingerprints

    Get PDF
    Quantifying the scale and importance of individual dispersion between populations and life stages is a key challenge in marine ecology. The common sole (Solea solea), an important commercial flatfish in the North Sea, Atlantic Ocean and the Mediterranean Sea, has a marine pelagic larval stage, a benthic juvenile stage in coastal nurseries (lagoons, estuaries or shallow marine areas) and a benthic adult stage in deeper marine waters on the continental shelf. To date, the ecological connectivity among these life stages has been little assessed in the Mediterranean. Here, such an assessment is provided for the first time for the Gulf of Lions, NW Mediterranean, based on a dataset on otolith microchemistry and stable isotopic composition as indicators of the water masses inhabited by individual fish. Specifically, otolith Ba/Ca and Sr/Ca profiles, and delta C-13 and delta O-18 values of adults collected in four areas of the Gulf of Lions were compared with those of young-of-the-year collected in different coastal nurseries. Results showed that a high proportion of adults (>46%) were influenced by river inputs during their larval stage. Furthermore Sr/Ca ratios and the otolith length at one year of age revealed that most adults (similar to 70%) spent their juvenile stage in nurseries with high salinity, whereas the remainder used brackish environments. In total, data were consistent with the use of six nursery types, three with high salinity (marine areas and two types of highly saline lagoons) and three brackish (coastal areas near river mouths, and two types of brackish environments), all of which contributed to the replenishment of adult populations. These finding implicated panmixia in sole population in the Gulf of Lions and claimed for a habitat integrated management of fisherie

    Coupling hydrology, geochemistry and hydrodynamics towards rational management of discontinuous aquifers: application to the Ursuya massif (Basque Country, France)

    No full text
    The metamorphic massif of Ursuya (French Basque Country) is a strategic aquifer for the water supply of southwestern France. A multidisciplinary approach, conducted between 2009 and 2013, has led to understanding of the behaviour of this system made of discontinuous media. Isotopic and geochemical characteristics of rainwater were studied together with groundwater geochemistry, to delineate the water–rock interactions along the underground flowpaths. The chemical characteristics of groundwater, the residence times (less than 10 years to more than 50 years) and the associated mixing processes allow the achievement of a conceptual model of the groundwater flow. It highlights the role of the weathering profile from the point of view of mineralization as well as flowpaths. Finally, a quantitative approach shows highly heterogeneous hydrodynamic properties related to the weathering profile development. These results are synthesized and validated by a numerical model which forms the basis for rational management of the Ursuya aquifer in a region subject to a constant increase in water needs

    Contaminant transfer and hydrodispersiveparameters in basaltic lava flows: artificial tracertest and implications for long-term management

    No full text
    The aim of this paper is to evaluate the vulnerabilityafter point source contamination and characterizewater circulations in volcanic flows located in theArgnat basin volcanic system (Chaîne des Puys, FrenchMassif Central) using a tracer test performed by injectinga iodide solution. The analysis of breakthrough curves allowedthe hydrodispersive characteristics of the massivelava flows to be determined. Large Peclet numbers indicateda dominant advective transport. The multimodal featureof breakthrough curves combined with high valuesof mean velocity and low longitudinal dispersion coefficientsindicated thatwater flows in an environment analogousto a fissure system, and only slightly interacts with alow porosity matrix (ne < 1%). Combining this informationwith lava flow stratigraphy provided by several drillingsallowed a conceptual scheme of potential contaminant behaviourto be designed. Although lava flows are vulnerableto point source pollution due to the rapid transfer of waterwithin fractures, the saturated scoriaceous layers locatedbetween massive rocks should suffice to strongly bufferthe transit of pollution through dilution and longer transittimes. This was consistent with the low recovery rate ofthe presented tracer test

    Groundwater resources of Uzbekistan: an environmental and operational overview

    No full text
    As a result of the massive irrigation development during the Soviet Union era and intensive chemization of agriculture, the surface runoff quality has been degraded in this arid and endorheic region. Moreover hydraulically related groundwater has also been affected. Excessive irrigation has lead to land salinization, which now threatens the soil quality of significant areas where crop yields would be at risk in the future. Since the collapse of the Soviet Union, institutional changes have been undertaken for the management of natural resources and water infrastructure. At present, underdeveloped and inadequate systems have been practiced with respect to groundwater use and management. This paper analyzes the present extent of groundwater resources with consideration to their reserves, quality evolution, and to technical, institutional and transboundary management practices in Uzbekistan

    Identification of processes that control the stable isotope composition of rainwater in the humid tropical West-Central Africa

    No full text
    International audienceThis study interprets 11 years (2006 to 2016) and 6 months (March to August in 2017) of respectively monthly and daily isotopic (δD and δ18O) monitoring of rain at Douala (Cameroon), a humid tropical station in Western Africa. The main scope is to analyze the climate controls on precipitation isotopes at different timescales. Firstly, we examine the annual cycles of δ18O. Over the 11 years of survey, the annual cycle exhibits a W shape that is quite reproducible from year to year, with two minima in spring and autumn periods. Based on back trajectory calculations and remote sensing observations of water vapor isotopic composition, we show that the observed depletion in spring and autumn is due to strong convective activity along air mass trajectories. The same effect of convective activity can be observed at the daily timescale. At seasonal and daily time scales, the isotopic composition is also strongly tied to the convective organization and cloud types. More depleted precipitation is associated with larger areas of high clouds
    corecore