131 research outputs found

    Taxonomic assignment of uncultivated prokaryotic virus genomes is enabled by gene-sharing networks

    Get PDF
    © 2019, The Author(s), under exclusive licence to Springer Nature America, Inc. Microbiomes from every environment contain a myriad of uncultivated archaeal and bacterial viruses, but studying these viruses is hampered by the lack of a universal, scalable taxonomic framework. We present vConTACT v.2.0, a network-based application utilizing whole genome gene-sharing profiles for virus taxonomy that integrates distance-based hierarchical clustering and confidence scores for all taxonomic predictions. We report near-identical (96%) replication of existing genus-level viral taxonomy assignments from the International Committee on Taxonomy of Viruses for National Center for Biotechnology Information virus RefSeq. Application of vConTACT v.2.0 to 1,364 previously unclassified viruses deposited in virus RefSeq as reference genomes produced automatic, high-confidence genus assignments for 820 of the 1,364. We applied vConTACT v.2.0 to analyze 15,280 Global Ocean Virome genome fragments and were able to provide taxonomic assignments for 31% of these data, which shows that our algorithm is scalable to very large metagenomic datasets. Our taxonomy tool can be automated and applied to metagenomes from any environment for virus classification

    Filovirus refseq entries: Evaluation and selection of filovirus type variants, Type sequences, And names

    Get PDF
    Sequence determination of complete or coding-complete genomes of viruses is becoming common practice for supporting the work of epidemiologists, ecologists, virologists, and taxonomists. Sequencing duration and costs are rapidly decreasing, sequencing hardware is under modification for use by non-experts, and software is constantly being improved to simplify sequence data management and analysis. Thus, analysis of virus disease outbreaks on the molecular level is now feasible, including characterization of the evolution of individual virus populations in single patients over time. The increasing accumulation of sequencing data creates a management problem for the curators of commonly used sequence databases and an entry retrieval problem for end users. Therefore, utilizing the data to their fullest potential will require setting nomenclature and annotation standards for virus isolates and associated genomic sequences. The National Center for Biotechnology Information's (NCBI's) RefSeq is a non-redundant, curated database for reference (or type) nucleotide sequence records that supplies source data to numerous other databases. Building on recently proposed templates for filovirus variant naming [<virus name> (<strain>)/<isolation host-suffix>/<country of sampling>/<year of sampling>/<genetic variant designation>-<isolate designation>], we report consensus decisions from a majority of past and currently active filovirus experts on the eight filovirus type variants and isolates to be represented in RefSeq, their final designations, and their associated sequences.Other co-authors: Ralf G. Dietzgen, Norman A. Doggett, Olga Dolnik, John M. Dye, Sven Enterlein, Paul W. Fenimore, Pierre Formenty, Alexander N. Freiberg, Robert F. Garry, Nicole L. Garza, Stephen K. Gire, Jean-Paul Gonzalez, Anthony Griffiths, Christian T. Happi, Lisa E. Hensley, Andrew S. Herbert, Michael C. Hevey, Thomas Hoenen, Anna N. Honko, Georgy M. Ignatyev, Peter B. Jahrling, Joshua C. Johnson, Karl M. Johnson, Jason Kindrachuk, Hans-Dieter Klenk, Gary Kobinger, Tadeusz J. Kochel, Matthew G. Lackemeyer, Daniel F. Lackner, Eric M. Leroy, Mark S. Lever, Elke MĂŒhlberger, Sergey V. Netesov, Gene G. Olinger, Sunday A. Omilabu, Gustavo Palacios, Rekha G. Panchal, Daniel J. Park, Jean L. Patterson, Janusz T. Paweska, Clarence J. Peters, James Pettitt, Louise Pitt, Sheli R. Radoshitzky, Elena I. Ryabchikova, Erica Ollmann Saphire, Pardis C. Sabeti, Rachel Sealfon, Aleksandr M. Shestopalov, Sophie J. Smither, Nancy J. Sullivan, Robert Swanepoel, Ayato Takada, Jonathan S. Towner, Guido van der Groen, Viktor E. Volchkov, Valentina A. Volchkova, Victoria Wahl-Jensen, Travis K. Warren, Kelly L. Warfield, and Stuart T. Nichol Output Type: Lette

    Strengthening the interaction of the virology community with the International Committee on Taxonomy of Viruses (ICTV) by linking virus names and their abbreviations to virus species

    Get PDF
    The International Committee on Taxonomy of Viruses (ICTV) is tasked with classifying viruses into taxa (phyla to species) and devising taxon names. Virus names and virus name abbreviations are currently not within the ICTV’s official remit and are not regulated by an official entity. Many scientists, medical/veterinary professionals, and regulatory agencies do not address evolutionary questions nor are they concerned with the hierarchical organization of the viral world, and therefore, have limited use for ICTV-devised taxa. Instead, these professionals look to the ICTV as an expert point source that provides the most current taxonomic affiliations of viruses of interests to facilitate document writing. These needs are currently unmet as an ICTV-supported, easily searchable database that includes all published virus names and abbreviations linked to their taxa is not available. In addition, in stark contrast to other biological taxonomic frameworks, virus taxonomy currently permits individual species to have several members. Consequently, confusion emerges among those who are not aware of the difference between taxa and viruses, and because certain well-known viruses cannot be located in ICTV publications or be linked to their species. In addition, the number of duplicate names and abbreviations has increased dramatically in the literature. To solve this conundrum, the ICTV could mandate listing all viruses of established species and all reported unclassified viruses in forthcoming online ICTV Reports and create a searchable webpage using this information. The International Union of Microbiology Societies could also consider changing the mandate of the ICTV to include the nomenclature of all viruses in addition to taxon considerations. With such a mandate expansion, official virus names and virus name abbreviations could be catalogued and virus nomenclature could be standardized. As a result, the ICTV would become an even more useful resource for all stakeholders in virology

    Towards Viral Genome Annotation Standards, Report from the 2010 NCBI Annotation Workshop

    Get PDF
    Improvements in DNA sequencing technologies portend a new era in virology and could possibly lead to a giant leap in our understanding of viral evolution and ecology. Yet, as viral genome sequences begin to fill the world’s biological databases, it is critically important to recognize that the scientific promise of this era is dependent on consistent and comprehensive genome annotation. With this in mind, the NCBI Genome Annotation Workshop recently hosted a study group tasked with developing sequence, function, and metadata annotation standards for viral genomes. This report describes the issues involved in viral genome annotation and reviews policy recommendations presented at the NCBI Annotation Workshop

    Quaternary Ammonium Silane-Functionalized, Methacrylate Resin Composition With Antimicrobial Activities and Self-Repair Potential

    Get PDF
    The design of antimicrobial polymers to address healthcare issues and minimize environmental problems is an important endeavor with both fundamental and practical implications. Quaternary ammonium silane-functionalized methacrylate (QAMS) represents an example of antimicrobial macromonomers synthesized by a sol–gel chemical route; these compounds possess flexible Si–O–Si bonds. In present work, a partially hydrolyzed QAMS co-polymerized with 2,2-[4(2-hydroxy 3-methacryloxypropoxy)-phenyl]propane is introduced. This methacrylate resin was shown to possess desirable mechanical properties with both a high degree of conversion and minimal polymerization shrinkage. The kill-on-contact microbiocidal activities of this resin were demonstrated using single-species biofilms of Streptococcus mutans (ATCC 36558), Actinomyces naeslundii (ATCC 12104) and Candida albicans (ATCC 90028). Improved mechanical properties after hydration provided the proof-of-concept that QAMS-incorporated resin exhibits self-repair potential via water-induced condensation of organic modified silicate (ormosil) phases within the polymerized resin matrix

    Analysis of spounaviruses as a case study for the overdue reclassification of tailed phages

    Get PDF
    Tailed bacteriophages are the most abundant and diverse viruses in the world, with genome sizes ranging from 10 kbp to over 500 kbp. Yet, due to historical reasons, all this diversity is confined to a single virus order-Caudovirales, composed of just four families: Myoviridae, Siphoviridae, Podoviridae, and the newly created Ackermannviridae family. In recent years, this morphology-based classification scheme has started to crumble under the constant flood of phage sequences, revealing that tailed phages are even more genetically diverse than once thought. This prompted us, the Bacterial and Archaeal Viruses Subcommittee of the International Committee on Taxonomy of Viruses (ICTV), to consider overall reorganization of phage taxonomy. In this study, we used a wide range of complementary methods-including comparative genomics, core genome analysis, and marker gene phylogenetics-to show that the group of Bacillus phage SPO1-related viruses previously classified into the Spounavirinae subfamily, is clearly distinct from other members of the family Myoviridae and its diversity deserves the rank of an autonomous family. Thus, we removed this group from the Myoviridae family and created the family Herelleviridae-a new taxon of the same rank. In the process of the taxon evaluation, we explored the feasibility of different demarcation criteria and critically evaluated the usefulness of our methods for phage classification. The convergence of results, drawing a consistent and comprehensive picture of a new family with associated subfamilies, regardless of method, demonstrates that the tools applied here are particularly useful in phage taxonomy. We are convinced that creation of this novel family is a crucial milestone toward much-needed reclassification in the Caudovirales order.Peer reviewe

    Pseudo-acetylation of multiple sites on human Tau proteins alters Tau phosphorylation and microtubule binding, and ameliorates amyloid beta toxicity

    Get PDF
    Tau is a microtubule-associated protein that is highly soluble and natively unfolded. Its dysfunction is involved in the pathogenesis of several neurodegenerative disorders including Alzheimer's disease (AD), where it aggregates within neurons. Deciphering the physiological and pathogenic roles of human Tau (hTau) is crucial to further understand the mechanisms leading to its dysfunction in vivo. We have used a knock-out/knock-in strategy in Drosophila to generate a strain with hTau inserted into the endogenous fly tau locus and expressed under the control of the endogenous fly tau promoter, thus avoiding potential toxicity due to genetic over-expression. hTau knock-in (KI) proteins were expressed at normal, endogenous levels, bound to fly microtubules and were post-translationally modified, hence displaying physiological properties. We used this new model to investigate the effects of acetylation on hTau toxicity in vivo. The simultaneous pseudo-acetylation of hTau at lysines 163, 280, 281 and 369 drastically decreased hTau phosphorylation and significantly reduced its binding to microtubules in vivo. These molecular alterations were associated with ameliorated amyloid beta toxicity. Our results indicate acetylation of hTau on multiple sites regulates its biology and ameliorates amyloid beta toxicity in vivo

    Nomenclature- and Database-Compatible Names for the Two Ebola Virus Variants that Emerged in Guinea and the Democratic Republic of the Congo in 2014

    Get PDF
    In 2014, Ebola virus (EBOV) was identified as the etiological agent of a large and still expanding outbreak of Ebola virus disease (EVD) in West Africa and a much more confined EVD outbreak in Middle Africa. Epidemiological and evolutionary analyses confirmed that all cases of both outbreaks are connected to a single introduction each of EBOV into human populations and that both outbreaks are not directly connected. Coding-complete genomic sequence analyses of isolates revealed that the two outbreaks were caused by two novel EBOV variants, and initial clinical observations suggest that neither of them should be considered strains. Here we present consensus decisions on naming for both variants (West Africa: “Makona”, Middle Africa: “Lomela”) and provide database-compatible full, shortened, and abbreviated names that are in line with recently established filovirus sub-species nomenclatures
    • 

    corecore