419 research outputs found

    Behavioral Modernity and the Cultural Transmission of Structured Information: The Semantic Axelrod Model

    Full text link
    Cultural transmission models are coming to the fore in explaining increases in the Paleolithic toolkit richness and diversity. During the later Paleolithic, technologies increase not only in terms of diversity but also in their complexity and interdependence. As Mesoudi and O'Brien (2008) have shown, selection broadly favors social learning of information that is hierarchical and structured, and multiple studies have demonstrated that teaching within a social learning environment can increase fitness. We believe that teaching also provides the scaffolding for transmission of more complex cultural traits. Here, we introduce an extension of the Axelrod (1997} model of cultural differentiation in which traits have prerequisite relationships, and where social learning is dependent upon the ordering of those prerequisites. We examine the resulting structure of cultural repertoires as learning environments range from largely unstructured imitation, to structured teaching of necessary prerequisites, and we find that in combination with individual learning and innovation, high probabilities of teaching prerequisites leads to richer cultural repertoires. Our results point to ways in which we can build more comprehensive explanations of the archaeological record of the Paleolithic as well as other cases of technological change.Comment: 24 pages, 7 figures. Submitted to "Learning Strategies and Cultural Evolution during the Paleolithic", edited by Kenichi Aoki and Alex Mesoudi, and presented at the 79th Annual Meeting of the Society for American Archaeology, Austin TX. Revised 5/14/1

    First report of the ectomycorrhizal status of boletes on the Northern Yucatan Peninsula, Mexico determined using isotopic methods

    Get PDF
    Despite their prominent role for tree growth, few studies have examined the occurrence of ectomycorrhizal fungi in lowland, seasonally dry tropical forests (SDTF). Although fruiting bodies of boletes have been observed in a dry tropical forest on the Northern Yucatan Peninsula, Mexico, their occurrence is rare and their mycorrhizal status is uncertain. To determine the trophic status (mycorrhizal vs. saprotrophic) of these boletes, fruiting bodies were collected and isotopically compared to known saprotrophic fungi, foliage, and soil from the same site. Mean ή15N and ή13C values differed significantly between boletes and saprotrophic fungi, with boletes 8.0‰ enriched and 2.5‰ depleted in 15N and 13C, respectively relative to saprotrophic fungi. Foliage was depleted in 13C relative to both boletes and saprotrophic fungi. Foliar ή15N values, on the other hand, were similar to saprotrophic fungi, yet were considerably lower relative to bolete fruiting bodies. Results from this study provide the first isotopic evidence of ectomycorrhizal fungi in lowland SDTF and emphasize the need for further research to better understand the diversity and ecological importance of ectomycorrhizal fungi in these forested ecosystems

    Dynamics of pneumococcal nasopharyngeal carriage in healthy children attending a day care center in northern Spain. influence of detection techniques on the results

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pneumococcal nasopharyngeal carriage precedes invasive infection and is the source for dissemination of the disease. Differences in sampling methodology, isolation or identification techniques, as well as the period (pre -or post-vaccination) when the study was performed, can influence the reported rates of colonization and the distribution of serotypes carried.</p> <p>Objectives</p> <p>To evaluate the prevalence and dynamics of pneumococcal nasopharyngeal colonization in healthy children aged 6-34 months attending a day care center with a high level of hygiene and no overcrowding. The study was performed 3-4 years after the 7-valent pneumococcal vaccine was introduced, using multiple methodologies to detect and characterize the isolates.</p> <p>Methods</p> <p>Over 12 months, 25 children were sampled three times, 53 children twice and 27 children once. Three <it>Streptococcus pneumoniae </it>typing techniques were used: Quellung, Pneumotest-Latex-kit and multiplex-polymerase chain reaction (PCR). The similarity of isolates of the same serotype was established by pulsed field gel electrophoresis (PFGE) and occasionally the multilocus sequence type (ST) was also determined.</p> <p>Results</p> <p>Overall pneumococcal carriage and multiple colonization rates were 89.5% (94/105) and 39%, respectively. Among 218 pneumococci detected, 21 different serotypes and 13 non-typeable isolates were found. The most prevalent serotypes were 19A, 16F and 15B. Serotypes 15B, 19A and 21 were mainly found as single carriage; in contrast serotypes 6B, 11A and 20, as well as infrequent serotypes, were isolated mainly as part of multiple carriage. Most 19A isolates were ST193 but most serotypes showed high genetic heterogeneity. Changes in the pneumococci colonizing each child were frequent and the same serotype detected on two occasions frequently showed a different genotype. By multiplex-PCR, 100% of pneumococci could be detected and 94% could be serotyped versus 80.3% by the Quellung reaction and Pneumotest-Latex in combination (p < 0.001).</p> <p>Conclusions</p> <p>Rates of <it>S. pneumoniae </it>carriage and multiple colonization were very high. Prevalent serotypes differed from those found in similar studies in the pre-vaccination period. In the same child, clearance of a pneumococcal strain and acquisition of a new one was frequent in a short period of time. The most effective technique for detecting pneumococcal nasopharyngeal carriers was multiplex-PCR.</p

    The charcoal trap: Miombo forests and the energy needs of people

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study evaluates the carbon dioxide and other greenhouse gas fluxes to the atmosphere resulting from charcoal production in Zambia. It combines new biomass and flux data from a study, that was conducted in a <it>miombo </it>woodland within the Kataba Forest Reserve in the Western Province of Zambia, with data from other studies.</p> <p>Results</p> <p>The measurements at Kataba compared protected area (3 plots) with a highly disturbed plot outside the forest reserve and showed considerably reduced biomass after logging for charcoal production. The average aboveground biomass content of the reserve (Plots 2-4) was around 150 t ha<sup>-1</sup>, while the disturbed plot only contained 24 t ha<sup>-1</sup>. Soil carbon was not reduced significantly in the disturbed plot. Two years of eddy covariance measurements resulted in net ecosystem exchange values of -17 ± 31 g C m<sup>-2 </sup>y<sup>-1</sup>, in the first and 90 ± 16 g C m<sup>-2 </sup>in the second year. Thus, on the basis of these two years of measurement, there is no evidence that the <it>miombo </it>woodland at Kataba represents a present-day carbon sink. At the country level, it is likely that deforestation for charcoal production currently leads to a per capita emission rate of 2 - 3 t CO<sub>2 </sub>y<sup>-1</sup>. This is due to poor forest regeneration, although the resilience of <it>miombo </it>woodlands is high. Better post-harvest management could change this situation.</p> <p>Conclusions</p> <p>We argue that protection of <it>miombo </it>woodlands has to account for the energy demands of the population. The production at national scale that we estimated converts into 10,000 - 15,000 GWh y<sup>-1 </sup>of energy in the charcoal. The term "Charcoal Trap" we introduce, describes the fact that this energy supply has to be substituted when woodlands are protected. One possible solution, a shift in energy supply from charcoal to electricity, would reduce the pressure of forests but requires high investments into grid and power generation. Since Zambia currently cannot generate this money by itself, the country will remain locked in the charcoal trap such as many other of its African neighbours. The question arises whether and how money and technology transfer to increase regenerative electrical power generation should become part of a post-Kyoto process. Furthermore, better inventory data are urgently required to improve knowledge about the current state of the woodland usage and recovery. Net greenhouse gas emissions could be reduced substantially by improving the post-harvest management, charcoal production technology and/or providing alternative energy supply.</p

    Text Mining for Literature Review and Knowledge Discovery in Cancer Risk Assessment and Research

    Get PDF
    Research in biomedical text mining is starting to produce technology which can make information in biomedical literature more accessible for bio-scientists. One of the current challenges is to integrate and refine this technology to support real-life scientific tasks in biomedicine, and to evaluate its usefulness in the context of such tasks. We describe CRAB – a fully integrated text mining tool designed to support chemical health risk assessment. This task is complex and time-consuming, requiring a thorough review of existing scientific data on a particular chemical. Covering human, animal, cellular and other mechanistic data from various fields of biomedicine, this is highly varied and therefore difficult to harvest from literature databases via manual means. Our tool automates the process by extracting relevant scientific data in published literature and classifying it according to multiple qualitative dimensions. Developed in close collaboration with risk assessors, the tool allows navigating the classified dataset in various ways and sharing the data with other users. We present a direct and user-based evaluation which shows that the technology integrated in the tool is highly accurate, and report a number of case studies which demonstrate how the tool can be used to support scientific discovery in cancer risk assessment and research. Our work demonstrates the usefulness of a text mining pipeline in facilitating complex research tasks in biomedicine. We discuss further development and application of our technology to other types of chemical risk assessment in the future

    Organic residues in archaeology - the highs and lows of recent research

    Get PDF
    YesThe analysis of organic residues from archaeological materials has become increasingly important to our understanding of ancient diet, trade and technology. Residues from diverse contexts have been retrieved and analysed from the remains of food, medicine and cosmetics to hafting material on stone arrowheads, pitch and tar from shipwrecks, and ancient manure from soils. Research has brought many advances in our understanding of archaeological, organic residues over the past two decades. Some have enabled very specific and detailed interpretations of materials preserved in the archaeological record. However there are still areas where we know very little, like the mechanisms at work during the formation and preservation of residues, and areas where each advance produces more questions rather than answers, as in the identification of degraded fats. This chapter will discuss some of the significant achievements in the field over the past decade and the ongoing challenges for research in this area.Full text was made available in the Repository on 15th Oct 2015, at the end of the publisher's embargo period

    Boreal forest soil carbon fluxes one year after a wildfire: Effects of burn severity and management

    Get PDF
    The extreme 2018 hot drought that affected central and northern Europe led to the worst wildfire season in Sweden in over a century. The Ljusdal fire complex, the largest area burnt that year (8995 ha), offered a rare opportunity to quantify the combined impacts of wildfire and post-fire management on Scandinavian boreal forests. We present chamber measurements of soil CO2 and CH4 fluxes, soil microclimate and nutrient content from five Pinus sylvestris sites for the first growing season after the fire. We analysed the effects of three factors on forest soils: burn severity, salvage-logging and stand age. None of these caused significant differences in soil CH4 uptake. Soil respiration, however, declined significantly after a high-severity fire (complete tree mortality) but not after a low-severity fire (no tree mortality), despite substantial losses of the organic layer. Tree root respiration is thus key in determining post-fire soil CO2 emissions and may benefit, along with heterotrophic respiration, from the nutrient pulse after a low-severity fire. Salvage-logging after a high-severity fire had no significant effects on soil carbon fluxes, microclimate or nutrient content compared with leaving the dead trees standing, although differences are expected to emerge in the long term. In contrast, the impact of stand age was substantial: a young burnt stand experienced more extreme microclimate, lower soil nutrient supply and significantly lower soil respiration than a mature burnt stand, due to a thinner organic layer and the decade-long effects of a previous clear-cut and soil scarification. Disturbance history and burn severity are, therefore, important factors for predicting changes in the boreal forest carbon sink after wildfires. The presented short-term effects and ongoing monitoring will provide essential information for sustainable management strategies in response to the increasing risk of wildfire
    • 

    corecore