226 research outputs found

    Multi-Particle Collision Dynamics -- a Particle-Based Mesoscale Simulation Approach to the Hydrodynamics of Complex Fluids

    Full text link
    In this review, we describe and analyze a mesoscale simulation method for fluid flow, which was introduced by Malevanets and Kapral in 1999, and is now called multi-particle collision dynamics (MPC) or stochastic rotation dynamics (SRD). The method consists of alternating streaming and collision steps in an ensemble of point particles. The multi-particle collisions are performed by grouping particles in collision cells, and mass, momentum, and energy are locally conserved. This simulation technique captures both full hydrodynamic interactions and thermal fluctuations. The first part of the review begins with a description of several widely used MPC algorithms and then discusses important features of the original SRD algorithm and frequently used variations. Two complementary approaches for deriving the hydrodynamic equations and evaluating the transport coefficients are reviewed. It is then shown how MPC algorithms can be generalized to model non-ideal fluids, and binary mixtures with a consolute point. The importance of angular-momentum conservation for systems like phase-separated liquids with different viscosities is discussed. The second part of the review describes a number of recent applications of MPC algorithms to study colloid and polymer dynamics, the behavior of vesicles and cells in hydrodynamic flows, and the dynamics of viscoelastic fluids

    In situ quantification of HER2–protein tyrosine kinase 6 (PTK6) protein–protein complexes in paraffin sections from breast cancer tissues

    Get PDF
    BACKGROUND: Protein tyrosine kinase 6 (PTK6; breast tumour kinase) is overexpressed in up to 86% of the invasive breast cancers, and its association with the oncoprotein human epidermal growth factor receptor 2 (HER2) was shown in vitro by co-precipitation. Furthermore, expression of PTK6 in tumours is linked with the expression of HER2. METHOD AND RESULTS: In this study, we used the proximity ligation assay (PLA) technique on formalin-fixed paraffin sections from eighty invasive breast carcinoma tissue specimens to locate PTK6-HER2 protein-protein complexes. Proximity ligation assay signals from protein complexes were assessed quantitatively, and expression levels showed a statistically significant association with tumour size (P=0.015) and course of the cancer disease (P=0.012). CONCLUSION: Protein tyrosine kinase 6 forms protein complexes with HER2 in primary breast cancer tissues, which can be visualised by use of the PLA technique. Human epidermal growth factor receptor 2-PTK6 complexes are of prognostic relevance

    Lattice Boltzmann simulations of soft matter systems

    Full text link
    This article concerns numerical simulations of the dynamics of particles immersed in a continuum solvent. As prototypical systems, we consider colloidal dispersions of spherical particles and solutions of uncharged polymers. After a brief explanation of the concept of hydrodynamic interactions, we give a general overview over the various simulation methods that have been developed to cope with the resulting computational problems. We then focus on the approach we have developed, which couples a system of particles to a lattice Boltzmann model representing the solvent degrees of freedom. The standard D3Q19 lattice Boltzmann model is derived and explained in depth, followed by a detailed discussion of complementary methods for the coupling of solvent and solute. Colloidal dispersions are best described in terms of extended particles with appropriate boundary conditions at the surfaces, while particles with internal degrees of freedom are easier to simulate as an arrangement of mass points with frictional coupling to the solvent. In both cases, particular care has been taken to simulate thermal fluctuations in a consistent way. The usefulness of this methodology is illustrated by studies from our own research, where the dynamics of colloidal and polymeric systems has been investigated in both equilibrium and nonequilibrium situations.Comment: Review article, submitted to Advances in Polymer Science. 16 figures, 76 page

    Work-life conflict and associations with work- and nonwork-related factors and with physical and mental health outcomes: a nationally representative cross-sectional study in Switzerland

    Get PDF
    BACKGROUND: The aim of the present cross-sectional study was to examine work- and nonwork-related factors and physical and mental health outcomes associated with combined time- and strain-based work-life conflict (WLC) among adult employees living and working in Switzerland as well as possible gender differences in this regard. METHODS: The data used for the study were taken from wave 6 of the nationally representative Swiss Household Panel (SHP) collected in 2004. The analysis was restricted to 4'371 employees aged 20 to 64 years. Trivariate crosstabulations and multivariate linear and logistic regression analyses stratified by gender were performed in order to calculate gender-specific prevalence rates (%), beta coefficients (SZ) and crude as well as multiple adjusted odds ratios (OR) as measures of association. RESULTS: Every eighth person (12.5%) within the study population has a high or very high WLC score. Prevalence rates are clearly above average in men and women with higher education, in executive positions or managerial functions, in full-time jobs, with variable work schedules, regular overtime, long commuting time to work and job insecurity. Working overtime regularly, having variable work schedules and being in a management position are most strongly associated with WLC in men, whereas in women the level of employment is the strongest explanatory variable by far, followed by variable work schedules and high job status (managerial position). In both men and women, WLC is associated with several physical and mental health problems. Employees with high or very high WLC show a comparatively high relative risk of self-reported poor health, anxiety and depression, lack of energy and optimism, serious backache, headaches, sleep disorders and fatigue. While overall prevalence rate of (very) high WLC is higher in men than in women, associations between degrees of WLC and most health outcomes are stronger in women than in men. CONCLUSIONS: This important issue which up to now has been largely neglected in public health research needs to be addressed in future public health research and, if the findings are confirmed by subsequent (longitudinal) studies, to be considered in workplace health promotion and interventions in Switzerland as elsewhere

    Progress from ASDEX Upgrade experiments in preparing the physics basis of ITER operation and DEMO scenario development

    Get PDF

    Overview of physics studies on ASDEX Upgrade

    Get PDF
    The ASDEX Upgrade (AUG) programme, jointly run with the EUROfusion MST1 task force, continues to significantly enhance the physics base of ITER and DEMO. Here, the full tungsten wall is a key asset for extrapolating to future devices. The high overall heating power, flexible heating mix and comprehensive diagnostic set allows studies ranging from mimicking the scrape-off-layer and divertor conditions of ITER and DEMO at high density to fully non-inductive operation (q 95 = 5.5, ) at low density. Higher installed electron cyclotron resonance heating power 6 MW, new diagnostics and improved analysis techniques have further enhanced the capabilities of AUG. Stable high-density H-modes with MW m-1 with fully detached strike-points have been demonstrated. The ballooning instability close to the separatrix has been identified as a potential cause leading to the H-mode density limit and is also found to play an important role for the access to small edge-localized modes (ELMs). Density limit disruptions have been successfully avoided using a path-oriented approach to disruption handling and progress has been made in understanding the dissipation and avoidance of runaway electron beams. ELM suppression with resonant magnetic perturbations is now routinely achieved reaching transiently . This gives new insight into the field penetration physics, in particular with respect to plasma flows. Modelling agrees well with plasma response measurements and a helically localised ballooning structure observed prior to the ELM is evidence for the changed edge stability due to the magnetic perturbations. The impact of 3D perturbations on heat load patterns and fast-ion losses have been further elaborated. Progress has also been made in understanding the ELM cycle itself. Here, new fast measurements of and E r allow for inter ELM transport analysis confirming that E r is dominated by the diamagnetic term even for fast timescales. New analysis techniques allow detailed comparison of the ELM crash and are in good agreement with nonlinear MHD modelling. The observation of accelerated ions during the ELM crash can be seen as evidence for the reconnection during the ELM. As type-I ELMs (even mitigated) are likely not a viable operational regime in DEMO studies of 'natural' no ELM regimes have been extended. Stable I-modes up to have been characterised using -feedback. Core physics has been advanced by more detailed characterisation of the turbulence with new measurements such as the eddy tilt angle - measured for the first time - or the cross-phase angle of and fluctuations. These new data put strong constraints on gyro-kinetic turbulence modelling. In addition, carefully executed studies in different main species (H, D and He) and with different heating mixes highlight the importance of the collisional energy exchange for interpreting energy confinement. A new regime with a hollow profile now gives access to regimes mimicking aspects of burning plasma conditions and lead to nonlinear interactions of energetic particle modes despite the sub-Alfvénic beam energy. This will help to validate the fast-ion codes for predicting ITER and DEMO

    Tools for surveillance of anti-malarial drug resistance: an assessment of the current landscape

    Full text link
    corecore