408 research outputs found

    Confusing the extragalactic neutrino flux limit with a neutrino propagation limit

    Full text link
    We study the possible suppression of the extragalactic neutrino flux due to a nonstandard interaction during its propagation. In particular, we study neutrino interaction with an ultra-light scalar field dark matter. It is shown that the extragalactic neutrino flux may be suppressed by such an interaction, leading to a new mechanism to reduce the ultra-high energy neutrino flux. We study both the cases of non-self-conjugate as well as self-conjugate dark matter. In the first case, the suppression is independent of the neutrino and dark matter masses. We conclude that care must be taken when explaining limits on the neutrino flux through source acceleration mechanisms only, since there could be other mechanisms for the reduction of the neutrino flux.Comment: 15 pages, 4 figures. Important changes implemented. Abstract modified. Conclusions remain. To be published in JCA

    Constraining scalar fields with stellar kinematics and collisional dark matter

    Full text link
    The existence and detection of scalar fields could provide solutions to long-standing puzzles about the nature of dark matter, the dark compact objects at the centre of most galaxies, and other phenomena. Yet, self-interacting scalar fields are very poorly constrained by astronomical observations, leading to great uncertainties in estimates of the mass mϕm_\phi and the self-interacting coupling constant λ\lambda of these fields. To counter this, we have systematically employed available astronomical observations to develop new constraints, considerably restricting this parameter space. In particular, by exploiting precise observations of stellar dynamics at the centre of our Galaxy and assuming that these dynamics can be explained by a single boson star, we determine an upper limit for the boson star compactness and impose significant limits on the values of the properties of possible scalar fields. Requiring the scalar field particle to follow a collisional dark matter model further narrows these constraints. Most importantly, we find that if a scalar dark matter particle does exist, then it cannot account for both the dark-matter halos and the existence of dark compact objects in galactic nucleiComment: 23 pages, 8 figures; accepted for publication by JCAP after minor change

    Classical and Quantum Decay of Oscillatons: Oscillating Self-Gravitating Real Scalar Field Solitons

    Full text link
    The oscillating gravitational field of an oscillaton of finite mass M causes it to lose energy by emitting classical scalar field waves, but at a rate that is non-perturbatively tiny for small GMm, where m is the scalar field mass: d(GM)/dt ~ -3797437.776333015 e^[-39.433795197160163/(GMm)]/(GMm)^2. Oscillatons also decay by the quantum process of the annihilation of scalarons into gravitons, which is only perturbatively small in GMm, giving by itself d(GM)/dt ~ - 0.008513223934732692 G m^2 (GMm)^5. Thus the quantum decay is faster than the classical one for Gmm < 39.4338/[ln(1/Gm^2)}-7ln(GMm)+19.9160]. The time for an oscillaton to decay away completely into free scalarons and gravitons is ~ 2/(G^5 m^11) ~ 10^324 yr (1 meV/m)^11. Oscillatons of more than one real scalar field of the same mass generically asymptotically approach a static-geometry U(1) boson star configuration with GMm = GM_0 m, at the rate d(GM/c^3)/dt ~ [(C/(GMm)^4)e^{-alpha/(GMm)}+Q(m/m_{Pl})^2(GMm)^3] [(GMm)^2-(GM_0 m)^2], with GM_0 m depending on the magnitudes and relative phases of the oscillating fields, and with the same constants C, alpha, and Q given numerically above for the single-field case that is equivalent to GM_0 m = 0.Comment: 75 pages, LaTe

    Solution generating in scalar-tensor theories with a massless scalar field and stiff perfect fluid as a source

    Get PDF
    We present a method for generating solutions in some scalar-tensor theories with a minimally coupled massless scalar field or irrotational stiff perfect fluid as a source. The method is based on the group of symmetries of the dilaton-matter sector in the Einstein frame. In the case of Barker's theory the dilaton-matter sector possesses SU(2) group of symmetries. In the case of Brans-Dicke and the theory with "conformal coupling", the dilaton- matter sector has SL(2,R)SL(2,R) as a group of symmetries. We describe an explicit algorithm for generating exact scalar-tensor solutions from solutions of Einstein-minimally-coupled-scalar-field equations by employing the nonlinear action of the symmetry group of the dilaton-matter sector. In the general case, when the Einstein frame dilaton-matter sector may not possess nontrivial symmetries we also present a solution generating technique which allows us to construct exact scalar-tensor solutions starting with the solutions of Einstein-minimally-coupled-scalar-field equations. As an illustration of the general techniques, examples of explicit exact solutions are constructed. In particular, we construct inhomogeneous cosmological scalar-tensor solutions whose curvature invariants are everywhere regular in space-time. A generalization of the method for scalar-tensor-Maxwell gravity is outlined.Comment: 10 pages,Revtex; v2 extended version, new parts added and some parts rewritten, results presented more concisely, some simple examples of homogeneous solutions replaced with new regular inhomogeneous solutions, typos corrected, references and acknowledgements added, accepted for publication in Phys.Rev.

    Galactic Halos of Fluid Dark Matter

    Get PDF
    Dwarf spiral galaxies - and in particular the prototypical DDO 154 - are known to be completely dominated by an unseen component. The putative neutralinos - so far the favored explanation for the astronomical dark matter - fail to reproduce the well measured rotation curves of those systems because these species tend to form a central cusp whose presence is not supported by observation. We have considered here a self-coupled charged scalar field as an alternative to neutralinos and investigated whether a Bose condensate of that field could account for the dark matter inside DDO 154 and more generally inside dwarf spirals. The size of the condensate turns out to be precisely determined by the scalar mass m and self-coupling lambda of the field. We find actually that for m^4 / lambda = 50 - 75 eV^4, the agreement with the measurements of the circular speed of DDO 154 is impressive whereas it lessens for larger systems. The cosmological behavior of the field is also found to be consistent - yet marginally - with the limits set by BBN on the effective number of neutrino families. We conclude that classical configurations of a scalar and self-coupled field provide a possible solution to the astronomical dark matter problem and we suggest further directions of research.Comment: 20 pages, 7 figures; one reference added, version to be published in PR

    Cranberry A-type proanthocyanidins selectively target acute myeloid leukemia cells

    Get PDF
    Most elderly patients affected with acute myeloid leukemia (AML) will relapse and die of their disease even after achieving complete remission, thus emphasizing the urgent need for new therapeutic approaches with minimum toxicity to normal hematopoietic cells. Cranberry (Vaccinium spp.) extracts have exhibited anticancer and chemopreventive properties that have been mostly attributed to A-type proanthocyanidin (A-PAC) compounds. A-PACs, isolated from a commercially available cranberry extract, were evaluated for their effects on leukemia cell lines, primary AML samples, and normal CD34+ cord blood specimens. Our results indicated potent and specific antileukemia activity in vitro. In addition, the antileukemia activity of A-PACs extended to malignant progenitor and stem cell populations, sparing their normal counterparts. The antileukemia effects of A-PACs were also observed in vivo using patient derived xenografts. Surprisingly, we found that the mechanism of cell death was driven by activation of NF-ÎșB. Overall, our data suggest that A-PACs could be used to improve treatments for AML by targeting leukemia stem cells through a potentially novel pathway

    The comparative responsiveness of Hospital Universitario Princesa Index and other composite indices for assessing rheumatoid arthritis activity

    Get PDF
    Objective To evaluate the responsiveness in terms of correlation of the Hospital Universitario La Princesa Index (HUPI) comparatively to the traditional composite indices used to assess disease activity in rheumatoid arthritis (RA), and to compare the performance of HUPI-based response criteria with that of the EULAR response criteria. Methods Secondary data analysis from the following studies: ACT-RAY (clinical trial), PROAR (early RA cohort) and EMECAR (pre-biologic era long term RA cohort). Responsiveness was evaluated by: 1) comparing change from baseline (Delta) of HUPI with Delta in other scores by calculating correlation coefficients; 2) calculating standardised effect sizes. The accuracy of response by HUPI and by EULAR criteria was analyzed using linear regressions in which the dependent variable was change in global assessment by physician (Delta GDA-Phy). Results Delta HUPI correlation with change in all other indices ranged from 0.387 to 0.791); HUPI's standardized effect size was larger than those from the other indices in each database used. In ACT-RAY, depending on visit, between 65 and 80% of patients were equally classified by HUPI and EULAR response criteria. However, HUPI criteria were slightly more stringent, with higher percentage of patients classified as non-responder, especially at early visits. HUPI response criteria showed a slightly higher accuracy than EULAR response criteria when using Delta GDA-Phy as gold standard. Conclusion HUPI shows good responsiveness in terms of correlation in each studied scenario (clinical trial, early RA cohort, and established RA cohort). Response criteria by HUPI seem more stringent than EULAR''s

    Tracking development assistance for health and for COVID-19 : a review of development assistance, government, out-of-pocket, and other private spending on health for 204 countries and territories, 1990-2050

    Get PDF
    Background The rapid spread of COVID-19 renewed the focus on how health systems across the globe are financed, especially during public health emergencies. Development assistance is an important source of health financing in many low-income countries, yet little is known about how much of this funding was disbursed for COVID-19. We aimed to put development assistance for health for COVID-19 in the context of broader trends in global health financing, and to estimate total health spending from 1995 to 2050 and development assistance for COVID-19 in 2020. Methods We estimated domestic health spending and development assistance for health to generate total health-sector spending estimates for 204 countries and territories. We leveraged data from the WHO Global Health Expenditure Database to produce estimates of domestic health spending. To generate estimates for development assistance for health, we relied on project-level disbursement data from the major international development agencies' online databases and annual financial statements and reports for information on income sources. To adjust our estimates for 2020 to include disbursements related to COVID-19, we extracted project data on commitments and disbursements from a broader set of databases (because not all of the data sources used to estimate the historical series extend to 2020), including the UN Office of Humanitarian Assistance Financial Tracking Service and the International Aid Transparency Initiative. We reported all the historic and future spending estimates in inflation-adjusted 2020 US,2020US, 2020 US per capita, purchasing-power parity-adjusted USpercapita,andasaproportionofgrossdomesticproduct.Weusedvariousmodelstogeneratefuturehealthspendingto2050.FindingsIn2019,healthspendinggloballyreached per capita, and as a proportion of gross domestic product. We used various models to generate future health spending to 2050. Findings In 2019, health spending globally reached 8. 8 trillion (95% uncertainty interval [UI] 8.7-8.8) or 1132(1119−1143)perperson.Spendingonhealthvariedwithinandacrossincomegroupsandgeographicalregions.Ofthistotal,1132 (1119-1143) per person. Spending on health varied within and across income groups and geographical regions. Of this total, 40.4 billion (0.5%, 95% UI 0.5-0.5) was development assistance for health provided to low-income and middle-income countries, which made up 24.6% (UI 24.0-25.1) of total spending in low-income countries. We estimate that 54.8billionindevelopmentassistanceforhealthwasdisbursedin2020.Ofthis,54.8 billion in development assistance for health was disbursed in 2020. Of this, 13.7 billion was targeted toward the COVID-19 health response. 12.3billionwasnewlycommittedand12.3 billion was newly committed and 1.4 billion was repurposed from existing health projects. 3.1billion(22.43.1 billion (22.4%) of the funds focused on country-level coordination and 2.4 billion (17.9%) was for supply chain and logistics. Only 714.4million(7.7714.4 million (7.7%) of COVID-19 development assistance for health went to Latin America, despite this region reporting 34.3% of total recorded COVID-19 deaths in low-income or middle-income countries in 2020. Spending on health is expected to rise to 1519 (1448-1591) per person in 2050, although spending across countries is expected to remain varied. Interpretation Global health spending is expected to continue to grow, but remain unequally distributed between countries. We estimate that development organisations substantially increased the amount of development assistance for health provided in 2020. Continued efforts are needed to raise sufficient resources to mitigate the pandemic for the most vulnerable, and to help curtail the pandemic for all. Copyright (C) 2021 The Author(s). Published by Elsevier Ltd.Peer reviewe
    • 

    corecore