PHYSICAL REVIEW D 68, 023511 (2003

Galactic halos of fluid dark matter
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Dwarf spiral galaxies, and in particular the prototypical DDO 154, are known to be completely dominated by
an unseen component. The putative neutralinos, so far the favored explanation for the astronomical dark matter,
fail to reproduce the well measured rotation curves of those systems because these species tend to form a
central cusp whose presence is not supported by observation. We have considered here a self-coupled charged
scalar field as an alternative to neutralinos and investigated whether a Bose condensate of that field could
account for the dark matter inside DDO 154 and more generally inside dwarf spirals. The size of the conden-
sate turns out to be precisely determined by the scalar massl self-coupling\ of the field. We find actually
that form*/\ ~50-75 eV} the agreement with the measurements of the circular speed of DDO 154 is impres-
sive, whereas it lessens for larger systems. The cosmological behavior of the field is also found to be consis-
tent, though marginally, with the limits set by big bang nucleosynthesis on the effective number of neutrino
families. We conclude that classical configurations of a scalar and self-coupled field provide a possible solution
to the astronomical dark matter problem and we suggest further directions of research.
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[. INTRODUCTION clearly contradicts the results from currédtbody simula-
tions, in which the dark matter density is strongly enhanced
After many years of global consensus on the fact that darlat the center of the halo with respect to its outskirts.
matter consists of weakly interacting massive particles This argument was attacked by Weinberg and Kaiz
(WIMPs), such as, for instance, the lightest neutralino in thewho stressed the importance of including the baryon compo-
minimal supersymmetric standard model, there is still nonent in N-body simulations. Indeed, the baryon dissipative
strong evidence in favor of WIMP, either from bolometer effects could be responsible for a smoothing of the central
experiments designed for direct detection or from the obserdark matter cusp in the early Universe. This possible solution
vation of cosmic rays, a fraction of which could consist of to the dark matter crisis was discarded later by Sellw@&id
WIMP annihilation products. This absence of experimentalwho found opposite results in his simulation.
constraints on dark matter from the particle physics side Apart from the central cusp problem:-body simulations
leaves the door wide open for alternative descriptions of theaised some secondary issiié$ First, a clumpy halo could
hidden mass of the Universe. generate some tidal effects that could break the spatial co-
Moreover, in the past three years, there has been a lot d¢ference of the disk. Second, the predicted number of satellite
controversy concerning the small-scale inhomogeneities ofalaxies around each galactic halo is far beyond what we see
the WIMP density. Indeed, many recewtbody simulations around the Milky Way. Third, the dynamical friction between
of structure formation in the Universe suggested that anylark matter particles and baryons should freeze out the spin-
dark matter component modelized as a gas of free particles-ring motion of baryonic bars in barred galaxies. All these
such as WIMPs—tends to cluster excessively on scales afrguments are still unclear, because they seem to depend on
the order of 1 kpc and smaller. This would result in cuspythe resolution under which simulations are carried [@y5],
density profiles at galactic centers, while most rotationand also because of our ignorance of what could be the light-
curves indicate a smooth core densjiy. Many galaxies to-mass ratio inside small dark matter clumps. In addition,
even seem to be dominated by baryons near their center, withe predicted number of satellite galaxies does not seem to
a significant dark matter fraction only at large radii. This be in contradiction with constraints from microlensifg].
Should these various problems be confirmed or not, it
sounds reasonable to explore alternatives to the WIMP
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fect thermal phase-space distributip/], or add a self- much larger scalefl6,12; the size of the self-gravitating
coupling between dark matter particlgd. A more radical configurations is still given by.=#%/p, but in the presence
possibility is to drop the assumption that dark matter is gov-of a self-coupling, the momentum cannot be identified with
erned by the laws of statistical thermodynamics. This wouldmv ... Then, without recurring to ultralight masses, we may
be the case if dark matter consisted of a classical scalar fieldtill describe the galactic halos with a Bose condensate. A
coherent on very large scales, and governed by the Kleinmassive scalar field with quartic—or close to quartic—self-
Gordon equation of motion. coupling was proposed as a possible dark matter candidate
This framework should be clearly distinguished from py peebles, who called it “fluid dark mattef’17]. In this
other models of bosonic dark matter, like those based ORaper, we will study a variant of fluid dark matter in which
heavy bosons—for instance, sneutrinos—or axions. In thehe quartically self-coupled massive scalar field is complex,
first case, the Compton wavelengti(mc) of an individual  still for stability reasons.Some cosmological properties of
particle is much smaller than the typical interparticle dis-sych a field were already discussed 19)].
tance, while in the second case, for axion masses of order e will focus mainly on galaxy rotation curves, assuming
10° eV, it is still much smaller than the typical size of a that the dark matter halos are the self-gravitating, aspherical,
galaxy. So, in these examples, the bosons can be describggid stable equilibrium configurations of our scalar field in
on astronomical scales like a gas of free particles in statistithe presence of a baryonic matter distribution—stellar disk,
cal equilibrium. It follows that the halo structure cannot beH| gas, etc. We will present here the first solution of this
distinguished from that of standard WIMPs. problem. However, we should stress that some different
A coherent scalar field configuration governed by themodels in which the rotation curves are also seeded by a
Klein-Gordon and Einstein equations is nothing but a selfoherent scalar field were studied previously by ScH2ok,
gravitating Bose condensate. Such condensates span Owgith a vanishing scalar potential, by Goodmf@i], with a
scales comparable to the de Broglie wavelerigth7i/p. In repulsive self-interaction, by Matost al. [22], by Nuca-
the case of free bosonise., with a quadratic scalar potential, mendi et al. [23], by Wetterich[24], and by Urena-Lopez
the momentunp is of ordermv .sc Wherev g is the escape and Liddle[25]. In some of these papers, and also in many
velocity from the system. Typical examples are boson starsther recent proposalsee, for instancé26]), the main goal
[9-12], for which the characteristic orders of magnitude dis-js to try to solve simultaneously the dark energy and dark
cussed in the literature are, for instance;-10 GeV and  matter problems, assuming that a quintessence field can clus-
Vesc—C, leading to a radius as tiny &4s-10" 4 cm. Even for  ter on galactic scales. This raises some subtle issues, like the
axions, which have a much smaller mass and an escape vexistence of a scale-dependent equation of state. At the
locity given by the motion of stars in a galaxy.s. present stage, we do not have such an ambition, and we will
~100 km/s, the de Broglie wavelength is only of order focus only on the dark matter problem.
=100 km, so that on galactic scales the medium can be In Sec. Il, we write the Einstein and Klein-Gordon equa-
treated as a gas. In order to obtain a galactic halo describafbns which govern the scalar field and the gravitational po-
by the Klein-Gordon equation, one should consider massegntial distributions in the presence of a given baryonic mat-
of order m=%/(Lvesd, Where vese~100 km/s and L ter density. We will see that these equations can be combined
~10 kpc. This yieldan~10"2 eV. Such an ultralight sca- into a single nonlinear Poisson equation. The solutions are
lar field was called “fuzzy dark matter” by Het al. [13], technically difficult to find, first, due to the nonlinearity, and
who discussed its overall cosmological behavior. In somesecond, because some boundary conditions are given at the
previous work, we focused on a variant of this model incenter, some others at infinity. So it is not possible to follow
which the ultralight scalar field is complex; then, the con-a lattice approach, in which one would start from a particular
served number associated with t€1) global symmetry point and integrate numerically grid point by grid point.
helps in stabilizing the condensate against fragmentatiorlowever we present in Sec. Il a recursive method which
[10,12. In [14]—hereafter paper I—we compared the rota-allows us to find all the exact solutions after a few iterations.
tion curves predicted by this model with some data fromin Sec. IV, we compare the galaxy rotation curves obtained
spiral galaxies. In15]—hereafter paper Il—we simulated in this way with some observational data. We lay particular
the cosmological evolution of the homogeneous backgrounémphasis on the dwarf spiral galaxy DDO 154, for which the
of such a field. The model seems to be quite successful irotation curve is among the most difficult to explain with the
explaining the rotation curves, but it has two caveats. Firstusual dark matter profiles. We will see that a mass-to-self-
such a low mass is very difficult to implement in realistic coupling ratio ofm*/\ =50 (eV)* provides a very good fit to
particle physics models. The second problem is related to thihe DDO 154 rotation curve, but at the expense of poor fits to
fact that, because of thg(1) symmetry, the field carries a the largest spiral galaxies. Because the scalar field condenses
conserved quantum number. As explained in paper Il, thénside the gravitational potential wells of baryons and
value derived from cosmological considerations for the denstrengthens them, the question of its effects on the inner
sity of this quantum number does not seem consistent witllynamics of the solar system naturally arises. We derive in
that inferred from astrophysical arguments. Sec. V a modification of the solar attraction in the presence
These caveats motivate the introduction of a quartic self-
coupling term in the scalar potential. In that case, it is al-
ready known from boson stars that for the same value of thelin contrast, a scalar field dark matter model in which the field is
mass the self-coupling constrains the field to condense oreal and unstable is discussed|ir8].

023511-2



GALACTIC HALOS OF FLUID DARK MATTER PHYSICAL REVIEW D 68, 023511 (2003

of the self-interacting scalar field under scrutiny and showeven more negligible sinde,/pp,~v2~v3,~P<1. We are

that an anomalous acceleration appears that is constant ajiferested in classical configurations where the figlis in a
that points toward the Sun. We investigate the limit set oncgnherent state such as

our model by the Pioneer radio data. In paper Il, we studied

the cosmological behavior of a homogeneous scalar field that . a(X) _

was assumed to play the role of dark matter at least from the d{x,t}= —=exp( —iot). )
time of matter-radiation equality until today. This analysis is ‘/E

updated in Sec. VI where we specifically assumé/\
=50 (eV)". Such a large value points toward a large total

density of the Universe during radiation domination, Wh'Chtime derivativedyd equals—iwe, whereas the space de-

ibs at the eldge of ;he .cugﬁnt bounds Se;t’ i.n plarticular, by biS?ivative d;¢ is of orderg/L wherelL is the physical length of
ang nuc eog,ynt_ esiBBN) on cosmologica parameters. o configuration. That length—which is related to the pa-
The last section is devoted to a discussion of the strong and, |\ i< and A of the potential—is required to be

weak aspects of our alternative dark matter model. We finally _; _; 5 kpc to account for the galactic dark matter. On the

suggest some furthgr_directions of inve_stigation beyon%ther hand, we shall see later thais very close to the mass
the simple but restrictive framework of isolated bosonlcm which i’s numerically found to be in the ballpark of a

Indeed, one can prove that all stable spherically symmetric
configurations can be parameterized in that Wa§]. The

configurations. fraction of an eV. We readily infer a ratio
Il. GRAVITATIONAL BEHAVIOR i 1 1 eV||1l kpc
40 1 _gaxi0 P e
dop mL L

The complex scalar fielgp under scrutiny in this article is

associated with the Lagrangian density So the space derivativéd ¢ of the scalar field can be safely

wva ot neglected throughout the analysis. In its weak-field limit,
L=9""d,¢'d,p=V(), 1) general relativity becomes a gauge theory. By conveniently

i . o _ choosing the gauge of harmonic coordinates in which the
where theU (1) invariant potentiaV includes both quadratic etric perturbatiorh,,, satisfies the condition

and quartic contributions:
1
V()= d+ M}, ) 3" =5 0"}, (7)

The gravitational behavior of the system follows the standardhe GR equations simplify into
general relativity(GR) equations while the fields satisfies

the Klein-Gordon equation Oh,,=—-167GS,, . (8
The effective sourc&,, is related to the energy-momentum
! 3,4 L9, b+ N 0 ©) tensorT ,, through .
- -9g“"d, —==0, v
e 79 :
1
_ - A

whereg,,, denotes the metric. We would like to investigate S = T zg#VT A ©

to what extent the scalar fiel¢ may account for the dark
matter inside galaxies. The problem simplifies insofar as thén the propagation equatioi8), the sources,, is computed
gravitational fields at stake are weak and static. In this quasin flat space while the metric perturbatior, is of orderd.
Newtonian limit of general relativity, deviations from the If the dark matter inside galaxies is understood as some clas-
Minkowski metric nwzdiag{l,—l,—l,— 1} are accounted sical configuration of the fields, S,, should take into ac-
for by the perturbation tensdr,, (from now on, we use the count both the baryonic population—stars and gas—and the
conventionc=1). The Newtonian gravitational potenti@®  scalar condensate. In the Newtonian limit where gravitomag-
=he/2 is actually a small quantity of Ordemisc netic effects are disregarded, the nonrelativistic velocities of
~10 7109, wherev . denotes the escape velocity. Our baryons can be neglected. The only nonvanishing compo-
analysis is based on an expansion up to first orddriithe ~ Nents of the baryonic source tensor are
baryonic content of galaxies is described through the energy- ) )
momentum tensor Sgosz and Slt} =~ ?b (10)
v — MLV —

T (Pt Po) U= PG, @ Assuming that Eq(5) describes the scalar field configuration

and disregarding the space derivativésh leads to the

h=11 7y i iv-
whereU#={1,v}. Baryons behave as dust with nonrelativ source components

istic velocities. Actually, because galaxies are virialized
systems—hence the assumption of static gravitational St=w?e?—V while S¢=-—7;V, (11)
fields—the spatial velocity is a small quantity of order ! .

Vesc~ V@. The kinetic pressure—to—mass density ratio iswhere the potential is
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m?> A No?=2(Dy— D) w?=2(Dy—P)m?. 21
V(o)= 5 0%+ 70" (12) (o= P) (o=P) @)
This relation has important consequences. To commence, the

The well-known solution of the Lienard and Wiechert re- densities p,=m?¢?{1+3d,—®} and pj=m?o?{1+d,
tarded potentials satisfies the propagation equa@nwe —®—2¥} both become equal to,~m?c at lowest order
readily conclude that the metric does not contain any spacdn the potentials. The =¥ and the metric simplifies. It is
time componenhy; and may be expressed at this stage as Straightforward to show that it readily satisfies the gauge
o condition (7). The scalar field density may be expressed as
dr?=(1+2®)dt?>— (1-2¥)5;;dx'dx, (13 the difference between the gravitational potentials inside and

_ ) ) ) on the boundary of the scalar field condensate:
where the static potentialb andW are given by integrals

over the source distributio® of the baryonic and scalar 2m*
mass densities: Po=5 (Po= P)H(Po— D), (22
- d3)7 - , = whereH(x) =1 for x>0 andH(x) =0 elsewhere. This leads
(%)= _GL) Xyl oY) +py(y)} (149 {0 the Poisson equation
m4
and AD=47Gpy+ 871G~ (Po— D) H(Do— D). (23
" ds)? - "o . . .
W(x)z—GfD W{pb(y)+p¢(y)}. (15 Inside the condensate, gravity turns out to be effectively

modified by the presence of the scalar dengifywhereas
the conventional Poisson equation is recovered outside. De-

The densities andp;’ are, respectively, defined by fining the Planck mass throughlp=1/\/G, we derive a

A typical scale of
p(’ﬁ=2w20'2—m20'2— 50'4 (16
Lo= Me_A 24
and _877 m4 N m2 ( )
"_ m202+£04 17) for the scalar field configurations in which we are interested.
Py 2 The dimensionless constafithas been introduced B¢6] in

their analysis of self-interacting boson stars. The staig

The potentialsd and ¥ are differenta priori. A careful  related to the mass and the quartic coupling through

inspection of the Klein-Gordon equation will eventually

show that they are actually equal. The latter may be written { A }1’2[ 1 eV] 2
L=1.6kp

as , (25

10?2 m

(1_Zq))gb_(1+q)_3\p)—1(9i{(1+q)_\p)[7i ¢,}+‘9_VT:0_ so that values of the mass in the ballpark of an eV may well
d be compatible with a sizk of order of a few kiloparsecs. As

(18  already noticed in[16], the space-dependent term in the

) .. Klein-Gordon equatior{18) is actually suppressed by a fac-
The space-dependent term is some 53 orders of magnitu 6 of A which, in our case, reaches values as large as

smaller _than its. time-dependent counterpart and we can 53 Tpe key feature of the scalar field configurations at
safely disregard it, so that the relati¢h8) simplifies to stake is the existence of a unique scalthat depends only
No2=(1—2®)w?—m?, (19) on the parametens and\ of the potentialV.

A pure scalar field configuration may also be seen as a
where the configuratiori5) has been assumed. The scalarmere fluid with mass density,,. The pressurd®, may be
field is in a classical state that may be pictured as a Bos€erived from the space-space comporgnt — #;; P, of its
condensate on the boundaries of which the gravitationa@nergy-momentum tensor. This leads to

potential is 4

L. m
o Py=L=g%p p—V=- (D= D) (26)
D=5 | 1-— . (20

w inside the condensate wheke<®,. The corresponding

Because the potentidl, is a small quantity, the pulsatian equation of state boils down to

is very close to the mags. The scalar field essentially van- N

ishes outside the condensate whereas its inner value is di- P =— 42 2
o . ¢ 1P (27)

rectly related to the gravitational potenti@l through 4m
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and features the generic polytropic fofn=Kp' whereT We will always work in the approximation in which the

=1+ 1/n andK =\/4m* are constants. We search for spheri- haryonic density,(X) is axially symmetric, continuous, and
cal symmetric solutions of configurations in hydrostatic equi-vanishing at infinity. So the induced gravitational potential
librium of the form p/pc=0O"(z) and P/Pc=0""Y(2)  should be
wherez=r/L is the dimensionless radius. The typical scale
of the polytrope depends on the central dengityand pres- axially symmetric,
sureP¢ through

continuous and twice derivable,

~(n+1)Pc
47Gpg

L? , (28 vanishing at infinity. (34)
We introduce a spherical coordinate systemd(¢) where

whereas the generic functio® satisfies the Lane-Emden (6=0) defines the symmetry axis. So there will be @0

equation dependence in the solutions, and a good way to find them is
to perform a Legendre transformation. Let us first illustrate
1d de ; ; ;
ity —_@n this for the general Poisson equation
5 z o (29
72 dz dz

Ad(r,0)=3(r,8), (35
with the initial conditions®(0)=1 and®’(0)=0. In the

scalar field case, the polytropic index is==1 and the WhereSand® possess the properties of symmetry and con-
solution tinuity listed previously. If one decomposes the potendal

and the source terr8into Legendre polynomials:

P sinz
—=0(z)=— (30 Fo
Pec z @(r,o):lE P,(cosg)d(r), (36)
readily obtains. It describes a spherical symmetric configu- °
ration where the scalar field alone is bound by its own grav- +oo
ity. The radius of the pure scalar field condensate is Ren S(r,0)=2 Pi(cosh)S(r), (37)
=0

= 7L where the scalé has already been derived in relations
(24) and (25):

K 1/2_ A 1/2 1
R=wL=m m =1 % E (31)

then theS,’s are found from

214+1 (+1
S(r)= Tf,l S(r,0)P (cosh)d(cosh), (39

The effect of an aspherical distribution of baryons on thewhile thed,’s are the solutions of the linear set of equations
scalar field condensate will be examined in the next section. ' q

I(14+1)
5 ®=S. (39
,

IIl. RESOLUTION METHOD

1d 2d<1>|
—_—— r —_—
2dr dr

r
We would like to compute the gravitational potentihl

associated with any density of baryopg in the galaxy, in  The boundary conditions are given by the propert8 for
the presence of a scalar field condensate. So we need to sols# |’s,
Eq. (23). The Heaviside function renders this equation
strongly nonlinear: different solutions have different surfaces

d .
where a<b|(0)=0 and Ilim®(r)=0. (40

r— +oc

P(x) =Py, (32 So, in order to find the solution of Eq39), one can first

so the sum of two solutions is not a solution. Nevertheless, fompute some Green S.fun.Ct'OﬁB that are continuous, ’?“”
at infinity, with zero derivative at the center, and verifying

is possible to solve the equation with a recursive method.
The idea is to start from an approximate solutibf?), and

to find ®™ from the iterations I(1+1)

Ld( 0,
r—za r— |(r,u)

ar G(r,u)=4(r—u),

m4
ACIJ(”“)=477pr+SWGT(CDO—(I)(”))H((I)O—CD(”)).
(33) where § is the Dirac function. The unique answer is

(41)

o . | —(1+1)
If, for a judicious choice ofp(?), thed (s converge toward o r B r B
a limit ®*), then the latter will be an exact solution GinW="537] g =D+ Hr=u).
of Eq. (23). (42
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FIG. 1. Gravitational potentia®™ seen in

_— © 4325 the direction 6=m/2 after n=0 (solid/red, 1
s "0.700 0.7016 (light dotted/green 5 (heavy dotted/blue and 10
2 T (dashed/purplerecursions, Withr ,,=r ./, Io
=2I nax/ ™, 69= /2. The functions are seen to
e i converge quickly.
L \ 4
05 | e ]
O 1 1 1 1
0 0.5 1 1.5 2 25
tirg
Since®(r)=f4”S(u)G,(u,r)du, one finally finds In summary, for a given baryonic density, the modified

nonlinear Poisson equation can be solvedbychoosing an
J’r 1+24 arbitrary 6y, (2) choosing a value, reflecting the size of the
21+1 Jo S(uu"du scalar field halo(3) defining a starting functio®(®), and(4)
| integrating Eq.(33) recursively, with the help of Eq$38),
r e 1-1 (43), and (36). We show in Appendix B how to define a
2l +1Jr S(Wu™du. 43 function ®(© which is close enough to the real solution in
order to ensure fast convergence.
We can still use this Green'’s function technique in our recur- Let us illustrate this technique with a particular example,
sive method. Indeed, (™ shares the propertig84), then  based on a stellar disk plus a bosonic halo. In the following,
we can identify the right-hand side of E(@®3) with S(r,0)  we will always treat the stellar disk as a thin distribution with

and find ®"*1) using the method described above. Thenexponentially decreasing density. The optical radius is de-
® (1) also shares the properti€34). So, at each recursion fined in such a way that it encompasses 83% of the total
step, we need to expand the right-hand side of B§) in  stellar mass, and the thickness of the disk is chosen to be 20
Legendre coefficients. Note that tdg"’s are known from times smaller than its radius, so that

the previous iteration, while the numbér, has to be im-

posed in some arbitrary way. In fact, looking again at Eq. r r

(23), it is clear that there should be different solutiofs pb(r,e)ocexp{ _3'%(:030 :pt] exp{ —3.2y Kpt]
associated with different values of the free paramdtgr (45
Intuitively, this parameter tunes the size of the bosonic halo,

since it defines the surface inside which the scalar field playwhere y=20. Let us choose a case whargandr, are

a role. In the recursion technique, a possible strategy couldomparable, so that baryons and bosons both have an influ-
be to imposeb, once and for all. Proceeding in that way, we ence: for instance,

found that the solution did not converge properly. In fact, it

is much more efficient to choose arbitrarily a point of coor- I max max

dinates (g, 6), and to require step by step that this point Fop=—_— and (foﬁo):(z?,g)- (46)
remains on the boundary; in other words, for eaghwe

define®, as®((r,, 6,). For a givend,, the different pos-

sible choices of ; generate a one-parameter family of solu-

tions. However, only a finite range of values lead to a

solution, fromr ,;,=0 for no bosonic halo to

(1)
d(r)=—

sing

We plot on Fig. 1 the function

O (r,7/2)
SN (ry,m/2)

A
Fmax= T\ 8momt 7L @) for n=0,1,5,10. In this example, the valde= &, is reached
atr=2r,, in the disk plane, and=1.85 , in the orthogo-

for a pure scalar field configuratidsee Eq.(31) or the al-  nal direction. The oblate form of the equipotentials is seen on
ternative derivation in Appendix AThe choice ofy, itselfis  Fig. 2.

irrelevant and we checked that any other choice gives the A good test of the recursive method is to pick up different
same family of solutions. values off, and see whether there is always a valy&d,)

(47)
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our method with the one calculated in the approximation of
paper |: namely, replacing the thin disk by a spherical one,
with a density such that in the absence of any halo the rota-
tion curve along the stellar plane would be the same as with
the true nonspherical disk. In the presence of a halo, one
can see that the difference becomes important only at
large radius.

IV. THE ROTATION CURVES OF DWARF SPIRALS

2ty

Dwarf spiral galaxies are known to be completely domi-
nated by dark matter at all radii. The usual cold dark matter
(CDM) models fail to reproduce the rotation curves of those
systems. The purpose of this analysis is to investigate
whether a self-interacting massive scalar field halo is able to
reproduce such rotation curves. Therefore, we will first scru-
tinize the typical dwarf spiral galaxy DDO 154, which has
been thoroughly studied—see, for example, the observations
in [27] and[28]. Because it is isolated and therefore seems to

Xty ' be protected against any external influence, this dwarf spiral
represents a prototypical example for our study. Its HI gas

FIG. 2. Equipotential lines generated by a disk-shaped densitgontribution is well measured and follows the distribution
and a scalar field hal@solid/red, compared to spherical equipoten-

o -elsnd|
I opt I opt
(49

tials (dashed/blug This plot has been computed in the casgy( c
=T T, To= 2T o™, 6= 12). The Cartesian coordinates,g) ~ Pgadl+60)=pg€Xp —0.8cosd
are such that the axis of revolution of the galaxy corresponds to

_ ) Its optical radiug ., is equal to 1.4 kpc. The contribution of
such that®, is always the same, and the solutioh¢r,6)  jts stars is visible and therefore well known, with a density
are eXaCtly identical. We checked this Successfully on Varidistribution given by re'atior(45)_ Both stars and gas ac-

sing

=0.

ous examples. ~ count for a small fraction of the observed circular velocity.
The rotation curve can be deduced from the gravitational |n order to compare the various dark matter models with
potential the observations on DDO 154, we have performegf dest
P on the 13 data points from Rd£28]. To commence, we have
uzzrﬁq’(rﬁ: m/2). (48)  considered models in which the approximate real density of

stars and gas has been assumedpgg~0.15¢;, and
Ustard T opt) = (0.3—0.9v (T o), Wherev gi56iS the stellar con-
tribution to the rotation velocity ;. The precise value of
the ratiov siard I opd /Viol M opy) IS UNknown and has been ad-
justed here in order to provide the best fit. On top of the stars
and gas, a dark matter component is added with a density
profile that depends on the model at stake. The model of
Moore et al.[1] is featured in panela) of Fig. 4 and corre-
sponds to the spherical symmetric density

In Fig. 3, we compare the rotation curve obtained following

1.2

08 |

0.6 [ 1

V(Y (ropy)

rgpt
em(ND=pul e —1<( - (50

rir+rgts

04 | flat disk
' e wherer is a scale radius parameter that is also adjusted in
the fit. Recent CDMN-body simulations point toward such a
profile. In the case of DDO 154, the best fit corresponds to
, . . . . . Pii(r opt/Ts) °~0.07p¢,s and to very large values of the
0 05 1 5 2 25 s scale radius. The y? value is found to be approximatively
o equal to 600 for 10 degrees of freedom. As previously men-
FIG. 3. Rotation curve due to a disk-shaped den@igjidireg  tioned, the model of Mooret al, where the density diverges

compared to that obtained in a spherical approximatiashed/ like 1~ i

0.2 |

in the central region fails to account for the dark
green as in paper |. These two examples have been computed in th@atter distribution inside DDO 154. Then we tested a
case €op="max/ T 0= 2l opt, 0o=/2). The difference is seen to Navarro-Frenk-White(NFW) spherical density profil¢29]

be fairly small. where
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FIG. 4. From left to right and top to bottom, the best fit of the DDO 154 rotation c(gokd/red is featured as well as the observed
stellar (dotted/greenand gagdashed/purpledensities. A dark matter component has been added and various profiles have been assumed:
Moore et al’s density(a), the NFW profile(b), isothermal haldc), and Burkert's phenomenological distributioa).

(3 was considered. This density law has a core radius of size
pnew(T) = PRFw ;ptz . (61)  re—justlike the isothermal halo—and converges at large dis-
r(r+ry) tances towards a Moot al. or a NFW profile. It has been

élatroduced as a phenomenological explanation of the rotation
curves of dwarf galaxief32]. The best parameters are then
re~1.9 o and pg~6pg, leading to a besy®~45 [see
panel(d) of Fig. 4]. At this stage, we reach the conclusion
that neutralino dark matter—should it collapse according to
N-body numerical simulations like those of Mooe¢al. or

Such a distribution peaks at the center and has also be
found to arise naturally itN-body numerical simulations of
neutralino dark matter. We find that the bggtlies around
200 whenr ¢~9r ,y and prew =~ 6pgiars[See panelb) of Fig.

4]. We also considered an isothermal spherical (a0 with

ript NFW—is too much peaked at the center of DDO 154 and
piso 1) = Piso) 5 3" (52)  does not account for the rotation curve in that region. The
retrs fact that these species fail to reproduce the inner dynamics of

This density was introduced in order to account for flat rota-2 system known to be saturated by dark matter is definitely a

tion curves. In the case of DDO 154 where the circular speeBrOblem' The. isothermal and Burkert halo§ provid_e a better
starts to decrease beyond 4.5 kpc, the best fit is obtained f@dreement with the data but are not consistent with the de-

re~1.2 oy and pg~0.19%,« The correspondinge? is ~ CT€as€ observed beyond 4.5 kpc. . .

now far better with a value-55 [see panelc) of Fig. 4]. We_ then investigated a slightly dnfl‘er_ent idea. _Followmg

Finally, a Burkert spherical distributiof81] Pfennigeret al. [33], the dark matter inside galaxies would
consist of pure molecular hydrogen,Hso cold that it would

r3 . have gone undetected so far. The formation of stars in the
pe(r)=pg % (53)  inner parts and the concomitant UV light production would
(r+ry(ro+rg) have turned part of the Hinto detectable HI. The distribu-
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completely dominates the inner dynamics beyen@l5 kpc.
More impressive is the right plot of Fig. 6 where the gas
distribution has now been rescaled in order to improve the
goodness of fit. A besty’? of ~7 is reached l‘orp;as
~0.3%¢,and a value om*/\~50 eV*.

In addition to the prototypical example of DDO 154, we
analyzed a sdt32] of small and medium size spiral systems
for which measurements of the rotation curve are of high
quality. These galaxies were selected with the requirement
that they have no bulge, very little HI, if any, and a dominant
stellar disk that accounts for the dynamics in the central re-
gion. They are also dominated by dark matter as is clear from
Fig. 7. A self-interacting bosonic halo has been assumed with
m*/\~50 eV*. Because of the presence of wiggles in the
rotation curves—presumably related to spiral arms inside the
disks—the besk? value becomes meaningless. The qualita-
tive agreement is nevertheless correct except in the case of
545-G5 where the optical radius ig,=7.7 kpc. Because
the massm and the coupling\ define a unique scale of
~ 2.3 kpc[see relation25)], the Bose condensate does not
extend far enough to account for the dark matter inside large
systems. A single self-interacting bosonic halo fails to repro-
tion of this hidden H component could be derived in the duce the dark matter inside light and massive spirals at the
case of DDO 154 from its observed rotation curve. We will Same time. A possible solution lies in the existence of several
nevertheless adopt the opposite point of view since our airgMall bosonic condensates or clumps inside the halos of
is to derive—and not to start from—the circular speed. Wearge galaxies, whereas a single condensate would account
therefore artificially rescaled the observed gas den@gy ~ for the dark matter of dwarf spirals such as DDO 154. We
by a homogeneous overall factor. The best fit featured in Figconcentrated on dwarf spiral galaxies for which neutralinos
5 corresponds t@gasngtarsand leads to a begt? of ~500  S€€M to be actually in trouble. The case of sev_eral bosonlc
which is not particularly exciting. In the case of the modelsClUMPS is beyond the scope of this work and will be inves-

of Fig. 4, the addition of such a cold gas component does ndi9ated elsewhere.
improve the goodness of our fits. _ . V. THE SOLAR SYSTEM
Finally, we assumed the presence of a self-interacting
bosonic halo and applied the recursion method discussed in As long as we were interested in the inner dynamics of
Sec. lll. The left plot of Fig. 6 corresponds to stellar and gagyalactic systems, the baryonic density in Egs. (23) and
populations as observed while a valuend¥\~75 eV* pro-  (33) was implicitly averaged over distances of order of a few
vides a besty? of 16. The agreement with the measuredpar secs and behaved smoothly. If the stellar population is
rotation curve is quite good. Notice that the bosonic halonow made of pointlike particles with mass; , the gravita-

VRV (Ropy)
o o
o [+

o
~

02 /i

FIG. 5. The DDO 154 rotation curvgolid/red is fitted with the
observed stellar densitidotted/green while the gas distribution
(dashed/purplehas been artificially enhanced with respect to the
observed HI by a rescaling factor.

(23

VRIV(Rop)
V(RIV(Ropy)

0.8 - - i

04

o2/

FIG. 6. The best fit of the DDO 154 rotation cur¢solid/red is presented with the observed stellar densitgtted/greenand gas
distribution (dashed/purple In the left panel, a self-interacting bosonic halo is assumed mth. ~ 75 eV* together with the observed gas
density profile. In the right panel, the gas component has been rescaled in order to improve the goodness of fit and anfAlue of
~50 eV* is derived.
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FIG. 7. From left to right and top to bottom, the best$itlid/red of the rotation curves of various spiral galaxies with increasing optical
radii. The dotted/green lines stand for the stellar contributions. The various panels corresp@M 839 ( on= 4.8 kpc), (b) M-3-1042
(ropr=4.8 kpc), (€) N755 (r op=4.8 kpc), (d) 116-G12 €o,=5.4 kpc), (€) 563-G14 € on=6.4 kpc), and(f) 545-G5 (o= 7.7 kpc).

tional potential® varies according to Outside the Bose condensate, the usual Poisson equation is
recovered so that the gravitational attraction of a star—say
the Sun—is not modified with respect to the conventional
situation. Slightly different is the case where the Sun lies
inside the region where the field extends. Intuitively, the
:47762 M, b"’(F— Fi)- (54) scalar field is expected to be attracted by the sol_ar gravity

i and to concentrate around the Sun, whose gravity should

m4
AD +8mG (D~ Do) H(Do— D)
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consequently be strengthened. In order to investigate that 59 o 2(10°2 m )4
effect, we first notice that the potential differende- ® is o5 L1910 2 11T evl - (61)
a linear function of the sources within the Bose condensate.

The contribution®, of the sun to the potential difference petajled analyses of radiometric data from Pioneer 10 and 11

® -, satisfies the modified Poisson equation indicate the existence of an apparent anomalous acceleration
mé acting on these spacecrgf4]. Quite exciting is the obser-
AP +87G—Po=47Gpg (55)  Vvation that this anomalous acceleratiégp is constant and
A’ )

directed toward the Sun. Both features are actually expected

. . . . . in the presence of a self-interacting scalar field. However, the
with the condition that it must vanish on the boundaries 0# P g

. agnitude of the observed anomalous acceleratbgp
.the. Bose condensate. If the solar system is well embedde'E&5>< 108 cms 2 is ten orders of magnitude larger than
inside the latter—below a depth well in excess of a few

; ical UnitéAU)—th ; f1h d to what is needed to explain the rotation curve of DDO 154.
astronomical uni —the surtace otthe condensate IS S0 g, g the Pioneer acceleration be the consequence of a sca-
far away that we may just require th@t, vanishes at infin-

. L . . lar field enhanced solar gravity, it would indicate an exceed-
ity. Assuming in addition that the solar densjty, has an g Y

: TS T _ _ _ ingly large value form/\Y* of the order of 1.3 keV and a
isotropic distribution, the solution of E¢55) readily obtains - - % 10-3
in terms of the spherical Bessel functiongz) =sinz/'z and typical condensate size~ 9510 © pc. We are therefore led

. ) LR to the conclusion that we cannot explain with the same value
No(2) = — cosz/z as explained in Appendix B: of m/\** the Pioneer anomalous acceleration and the rota-
L3 , tion curves of dwarf spirals.
Do(r)= _47TGT: coszJ po(u)usinudu

0 VI. COSMOLOGICAL BEHAVIOR

behavior of our scalar field. In paper Il, we studied the cos-
mological evolution of a homogeneous complex scalar field
The dimensionless radial coordinatés defined as the ratio with a quadratic and/or quartic potential. Here, we want to
r/L where the typical scalé has already been defined in ypdate this analysis for the valuesrof/\ found in Sec. IV.
Sec. II. Relations(24) and (25) imply that L exceeds the Generally speaking, focusing on the homogeneous quantities
solar radiusR by some 10-11 orders of magnitude. Theis the first step in any comprehensive study of a given cos-
gravitational potential which the Sun generates with the helgnological scenario. In our case, we need to know whether

+sinzf+wpo(u)u cosudu]. (56) We will now consider briefly the possible cosmological
z

of the scalar fieldp simplifies to the evolution of the field background violates any cosmo-
logical bound before studying the possible growth of spatial
Do(r)=— GM@cos{r/L). (57) fluctuations—hoping that they will cluster and form galactic
r halos after the time of equality between radiation density and
field density.

Because of our assumption as regards the boundary \ye refer the reader to paper Il for a detailed resolution of
condition—which we placed at|nf|n|ty.—th|s relation may be the Klein-Gordon and Friedmann equations in a Universe
safely used only for distances<L. Inside the solar system, ¢ontaining ordinary radiation, baryons, a homogeneous com-

this leads to the potential plex field, and a cosmological constant relevant only today. It
) is straightforward to show that when the potential is domi-
Bo(r)=— GMgo _ (58) nated by the quartic term, the energy density of the field
© r 212 smoothly decays a& *: so, in the early Universe, the scalar
field behaves as “dark radiation.” Later, when the quadratic
and to the gravitational field term takes over, i.e., when
m4
g<r>=—Gr“2®—GZ“LAf. (59 M g>~Ag]* = V(¢)~2+, (62

Should the solar system be embedded inside the Bose coHi€ field starts to decay s >, like dark matter: so it could
densate of the field under scrutiny in this article, the varioude responsible for a “matterlike” dominated stage. During

planets and satellites that orbit around the Sun should urfh® whole cosmological evolution, the kinetic energy of the
dergo the additional constant radial attraction field is of the same order of magnitude as its potential en-

ergy. So the ration*/\ immediately gives a rough estimate
m |4 of the total energy density of the field at the time of its
1 eV] (60 transition, denoted later at% If this density is~1 eV, we
immediately notice that it is of the same order of magnitude
This acceleration is so weak that it should not alter the moas the density at radiation-matter equality—remember that
tion of the planets around the Sun. The relative increase gb.~0.55 e\t for the concordance CDM with a cosmologi-
the solar gravitational attraction is actually cal constant A CDM) model. So, in the early Universe, the

102
59=(2.85x10 18 cm52)| X ”
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density of our “dark radiation”(the scalar fielgl had to be Q4 04\ 13 Qe h2) 413) \ Vg ) 4/3
comparable to that of “true radiation(photons and neutri- ANgg= CD+’;°4) =7 5( CDM ) ( ) _
nos. This brings some considerable tension with the bound 2.40,°m 0.13 m

on the total radiation density that can be derived from BBN. (67)

This cosmological toy model and the problems associated
with it were first discussed by Peeblgs?] in the case of a  Sticking to m*/A=50 (eV)*, and using the currently pre-
real scalar field, with essentially the same motivations as ifierred valuesh=0.68 andQ cpy=0.3, one findsANg=2,
the present work. As a possible way out, Peebles proposedvehich is above the usual BBN boufdNgg <1 [35]. How-

small modification of the scalar potential, ever, it is still possible to find some values of
2.2 . (ANgg,h,Qqm satisfying the above relation and allowed at
V(p)=m"$“+ A ¢H, ©3  the 1o level by current cosmic microwave background

4 (CMB) experiments and BBN predictiofi86]—for instance,
'(1.0,0.63,0.2D In any case, in the very near future, new
CMB observations will set some stringent limits on these
three parameters: it will then be easy to assess the validity of
our alternative to the usual cosmological scenario.

where g would be noninteger and slightly smaller than
Indeed, by lowering the indeg, one can decrease the frac-
tion of dark radiation in the early Universe, and in particular
at BBN. We will not follow this direction. Indeed, the analy-
sis of Sec. IV revealed a preferred value rof/\ around
50-75 e\f. This is significantly larger than the observed
value ofpeqand than the rough estimate of paper | where we VIl. CONCLUSIONS
consideredm®/A=1 eV*. Our purpose in the rest of this

section will be to check whether this new value is compatible We have shown tha_t a self-coupl_ed charged scalar field
with the BBN bound. provides an excellent fit to the rotation curve of the dwarf

In order to obtain a precise relation between the parameteiPira Dio 154. TT)at gaIax;I/ Is Ith%pro_totyp(ijcatt)l egarr&ple ofa

m*/\ and the effective number of neutrinos at BBN—which s;;]sterrf} nov¥nht0 € comp etel_y ommiate_ y af; matter.

is a convenient way to parametrize a cosmological densit e effect of the quartic coup Ing results in an effective
odified gravitation inside the Bose condensate, where the

that behaves like some extra relativistic degrees ot - . b I i h
freedom—we need to study numerically the detailed behayZ0ISSON  equation  becomes  strongly —nonlinear.  The

ior of the field in the vicinity of a transition between the Problem—complicated by the nonsphericity of the baryon

radiationlike and matterlike regimes. For each value ofdistibution—has been solved exactly as explained in Sec.
m?/\, it is possible to followp,,, and to extrapolate the lll. The agreement with the observations of the circular

branches irp¢oca*4 and inp(/,oca*3. We definepg, as the speed of DDO 154 is impressive. Notice that neutralino dark

energy density given at the intersection of the two asympmatter does not pass this test because of the central cusp that

totes. A knowledge of this single number is sufficient in or- it would develop. We conclude that the charged scalar field
der to relate exactly the constant value pgja“ in the early con5|d_ered in this analysis pro_vm!es an exciting alternat|v_e to
Universe to the constant value Pf,sa3 measured today. A galactic dzirk matter—at least |r_15|de dwarf systems. A typical
simple numerical simulation gives value ofm /7\~.50—75 eVt obtains. . .
The scalar field behaves cosmologically as a dark radia-
p;rsansition: 2 Am*I\ (64) tion component as long as the quartic contribution of the
potentialV(¢) dominates over its quadratic counterpart. The
independently of any other field or cosmological parameterssituation reversed when the field energy density is
The simulation also provides a very good analytic approxi-~2.4m4/7\ and a matterlike behavior subsequently ensues.
mation of the field density at any time—imposing that today, The larger the crucial parameter*/\, the sooner the tran-
whena=a,, the field density is given by the fraction of the sition between dark radiation and dark matterlike behaviors,
critical density usually attributed to cold dark matter, and consequently the smaller the contribution of the scalar
:QCDMpg; field to the overall radiation density at early times—for a
fixed scalar field mass density today. A large valuemdfx
o N 213 translates into a small number of effective neutrino families
QCDMpcﬁ (ag/a)®| . during BBN and we have shown that our model marginally
-Am 65) satisfies the requirement thAfN 4 should not exceed 1.
Actually the model is strongly constrained on the one

The field density before the transition can be read directlyyand by the sizé of the Bose condensates—and therefore of
from the previous equation. It can be conveniently paramihe corresponding galactic halos—and on the other hand by

etrized in terms of an effective neutrino number, defined aghe contributionA N to the radiation density at BBN. Both
usual through L and ANy decrease with increasing*/\ and a value for

the latter of~50-75 e\f, which provides excellent agree-
ment with DDO 154, is marginally consistent with BBN.
Large halos cannot consequently be pictured in terms of a
single Bose condensate, and the simple scheme presented
wherep, is the standard density of a single relativistic neu-here has to be modified. A possible solution—yet not very
trino species. The final result is natural—is to replace the quartic field self-interaction by a

12

0
ps=Qcpmpe (ag/a)°+

ANg=22, (66)

14
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¢9 term as suggested [47]. This would alleviate the BBN ¢ (z)
constraint. Another option worth being explored is to imag-

ine that massive and extended halos are formed of several
bosonic clumps. The coherent configuration that has been
investigated here may be understood as the ground state of —

sinz
(DO+[<D(O)—<I>O]T if z<w (see paper ),

some gigantic bosonic atom. It is therefore conceivable that 7d, _

the scalar field may also form several such condensates that 5 otherwise.

would be organized inside a huge bosonic molecule with a

spatial extension much in excess lof The electron cloud (A3)

around the proton does not extend further thah0 1°m _ _ _ .
inside the hydrogen atom and yet electrons are delocalized® the maximum extension of the scalar field hala jgy
over meter size distances inside metals. =myN8mGm’". The density of the bosonic halo is

If so, the dark matter would be made of small bosonic
clumps. Should the solar system lie within such a system, the
motion of its planets would provide in that case a lower
bound onL, since the smaller the latter, the stronger is the
effective modification to Newton’s law of gravitation. We and the total mass is
have actually shown in Sec. V that the scalar field concen-

2m*
P¢:—T(¢—®0)H(Z— ) (A4)

3/2

trates in the solar potential well and strengthens it to generate +oo

an additional gravitational attraction that is radial and con- M=4 2 f py(z')2'?d7’

stant. As a matter of fact, the radio data from the Pioneer 87Gm 0

probes are consistent with such an anomalous acceleration,

which seems to be constant and directed toward the Sun. :Z, / A [®y—D(0)] (A5)
Assuming that it results from the self-interacting scalar field G Vagrem* ° '

that we have investigated in this work, the observed magni-

tude 8gp~8.5<10 8 cms 2 would imply a value for On the other hand, the Gauss theorem applied to the sphere
m/\Y4 of order 1.3 keV and a typical condensate size of radiusr =r ,, gives

~0.01 pc. The merging of many of these small bosonic

clumps into a larger structure like a galactic halo is an open GM GM [87Gm*
question. Go=— T X (A6)
ACKNOWLEDGMENTS so that®(0)=2d,. The solution(A3) can be rewritten as
We would like to thank D. Maurin and R. Taillet for use- sinz '
ful discussions. Dyl 1+ T) if z<m,
P(z)= (AT)
APPENDIX A L OR .
—_— otherwise.
The purpose of this section is to derive the gravitational Z
potential generated by a pure scalar field condensate. This
calculation is complementary to the one at the end of Sec. Il, APPENDIX B
based on the polytropic formalism. In the absence of a bary- ) o ) o
onic densitypy,, Eq.(23) reads The purpose of this appendix is to provide a prescription
for the definition ofd®(®>—the starting function in the recur-
4 sive method. We tested this prescription on various ex-

A(D—Dy)+ 87-er—(<I>—<I>o)H(<IJO—<I>)=O. (A1)  amples, and found tha(® is always a fairly good approxi-
A mation of the exact solution, allowing for quick convergence.
The idea is to enforce the boundary surface on which the
Since there is no source, let us suppose that the gravitationfibld density m*/\)(®—®,)H(P,—P) vanishes to be a
potential has a spherical symmetry. One can do a changgerfect sphere. Of course, this has to be wrong when the
of variabler=z\\/87Gm® so that the equation becomes baryonic density is nonspherical. So, if we impose a constant
simply boundary radius, we need to relax the fact that the valuk of
should be constant all over the boundary. In other terms, if
d2 is the radial coordinate, we repladg(®,—P) by H(rg
—{Z(D— D)} +2(P— D) H(Py—D)=0. (A2)  —r), whererg is an arbitrary boundary radius.
dz If we define a dimensionless radial coordinate
=r8xGm?/\, Eq. (23) becomes
The only solution of this equation which is continuous and
derivable everywhere and goes to zero at infinity is ADP=S(z,0)+(Pyg—P)H(z9—2), (B1)
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whereS=47Gp. After a Legendre transformation, we ob- N A
tain the following set of differential equations: ®(2)=~ 5777 (a )L u' "2 (u)du
0
: d( ZdCI)l) D) (01— g, (20— 2 S(2) 1 o
e a5 | T T o (1T %09%0 Zp—2)=9(2), = S 1-1 _c2 —(+1)
2dz dz 22 o) 2|+1Z ur 'S (u)du—C, 2|+1z ,

(B4)
whered, o is the Kronecker symbol. Each of these equations

can be solved separately on the two intervaisz8<z, and ) _
zy<z=<w, using Green's functions. In terms of the sphencalWherec is another free constant. We impose the require-

Bessel functiong;(z) andn,(z), the solution of Eq(B1) for ~ ment that each Legendre coefficient of the gravitational po-
7<z,is tential is derivable and continuous on the boundasyz,:

®(2)=Dy6 0+ Nni(2) fozu2j|(u)S|(u)du D(29)=P(2g),

+j|(z)LOUZn,(u)Sl(u)deLCﬁj,(z) (B3) dizq)'(za):dizq)'(zg)' (B5)

whereC! is a free constant. In the same way, ¥ z,, the
solution is This defines a unique value for each constant of integration:

(IF =11 = @5 (1 + 1)+ 20(IF~ I})

(1+1)j1(20) + 20j{ (20)

co T2 (@4 Dz (I J>+z'+2(2|+1>j.’<zo><lf—lﬂ—<boal,o), &6

(I+1)j1(z0) + 20j (20)

where nition to ®)(z,,6) for any 6. In our approximation
. scheme,®©)(z,,6) is not independent ob, but we can
||1=”|(Zo)f u%j(u)S(u)du, choose a particular directiord;, and impose thatd,
0 =d)(z,,6,). Inserting this identity in Eq(B8), and using
Eqg. (B3), one obtains the relation

1 +o
2__ | 1-1
= —z|+1ZOLO umS(udu, D=0 (29, 6)

J|1:”|/(Zo)fOZOUZJW(U)S(U)dU. tanz 2 P\(cosbp)

L B x{ni(zo) | “WwswdutKiiizo)| (B9)
Ji 2|+10 . u-'S(u)du 0

(B7) where

One can then reconstruct the gravitational potendiaf’ P P
(IF=1H+1)+25(37 =)

from K = _ : . (B10)
+oo (I+1)ji(zo) + 0] (20)

(0) —
’ | .
P(z 0)—;0, Pi(cos#)®(z) (B8)

In summary, the first step of our recursive method is per-
formed in the following order(1) we choose a valug, (or

So far, the approximate solutish® constructed in this way r.) and an arbitrary directiod, (which will be kept for all
depends on two arbitrary numbers: figf, and secondP,,  the following iterationk (2) we solve Eq.(B9) in order to
which appears explicitly in the definitons @3 and C5.  find ®,; (3) we computed©)(z,6) using Egs.(B3), (B4),
However,zy and®, have to be related in some way. Indeed,and (B8). The next iterations are performed in the much
if ®© were an exact solutionP, would be equal by defi- simpler way described in Sec. IlI.
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