73 research outputs found

    In vitro study of antiamoebic activity of methanol extract of fruit of Pimpinella anisum on trophozoites of Entamoeba histolytica HM1-IMSS

    Get PDF
    The aniseed plant Pimpinella anisum (Saunf-Hindi) is one of the most ancient medicinal plants used by man. Currently, this plant has several uses in the food industry as spice, whereas in the pharmacopoeia, it is used as an expectorant in digestive disturbances, as mild diuretic, and as insect repellent in external use. In this paper, we evaluated the biological activity of methanolic extract of P. anisum on in vitro growth of Entamoeba histolytica HM1-IMSS under axenic conditions. We observed that the growth inhibition of E. histolytica was at CI50 = 0.034 μg/mL. Results confirm the antiamoebic activity of the methanolic extract of P. anisum.Keywords: Pimpinella anisum, Entamoeba histolytica, antiamoebic activity, medicinal plantsAfrican Journal of Biotechnology Vol. 12(16), pp. 2065-206

    Model-selection-based approach for calculating cellular multiplicity of infection during virus colonization of multi-cellular hosts

    Get PDF
    The cellular multiplicity of infection (MOI) is a key parameter for describing the interactions between virions and cells, predicting the dynamics of mixed-genotype infections, and understanding virus evolution. Two recent studies have reported in vivo MOI estimates for Tobacco mosaic virus (TMV) and Cauliflower mosaic virus (CaMV), using sophisticated approaches to measure the distribution of two virus variants over host cells. Although the experimental approaches were similar, the studies employed different definitions of MOI and estimation methods. Here, new model-selection-based methods for calculating MOI were developed. Seven alternative models for predicting MOI were formulated that incorporate an increasing number of parameters. For both datasets the best-supported model included spatial segregation of virus variants over time, and to a lesser extent aggregation of virus-infected cells was also implicated. Three methods for MOI estimation were then compared: the two previously reported methods and the best-supported model. For CaMV data, all three methods gave comparable results. For TMV data, the previously reported methods both predicted low MOI values (range: 1.04-1.23) over time, whereas the best-supported model predicted a wider range of MOI values (range: 1.01-2.10) and an increase in MOI over time. Model selection can therefore identify suitable alternative MOI models and suggest key mechanisms affecting the frequency of coinfected cells. For the TMV data, this leads to appreciable differences in estimated MOI values.This work was supported by grant BFU2012-30805 (SFE) and by 'Juan de la Cierva' postdoctoral contract JCI-2011-10379 (MPZ) from the Spanish Secretaria de Estado de Investigacion, Desarrollo e Innovacion. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Zwart, MP.; Tromas ., N.; Elena Fito, SF. (2013). Model-selection-based approach for calculating cellular multiplicity of infection during virus colonization of multi-cellular hosts. PLoS ONE. 8:64657-64657. https://doi.org/10.1371/journal.pone.0064657S64657646578Froissart, R., Wilke, C. O., Montville, R., Remold, S. K., Chao, L., & Turner, P. E. (2004). Co-infection Weakens Selection Against Epistatic Mutations in RNA Viruses. Genetics, 168(1), 9-19. doi:10.1534/genetics.104.030205Miyashita, S., & Kishino, H. (2009). Estimation of the Size of Genetic Bottlenecks in Cell-to-Cell Movement of Soil-Borne Wheat Mosaic Virus and the Possible Role of the Bottlenecks in Speeding Up Selection of Variations in trans-Acting Genes or Elements. Journal of Virology, 84(4), 1828-1837. doi:10.1128/jvi.01890-09Taylor, D. R., Zeyl, C., & Cooke, E. (2002). Conflicting levels of selection in the accumulation of mitochondrial defects inSaccharomycescerevisiae. Proceedings of the National Academy of Sciences, 99(6), 3690-3694. doi:10.1073/pnas.072660299Turner, P. E., & Chao, L. (1999). Prisoner’s dilemma in an RNA virus. Nature, 398(6726), 441-443. doi:10.1038/18913Turner, P. E., & Chao, L. (2003). Escape from Prisoner’s Dilemma in RNA Phage Φ6. The American Naturalist, 161(3), 497-505. doi:10.1086/367880Zwart, M. P., Erro, E., van Oers, M. M., de Visser, J. A. G. M., & Vlak, J. M. (2008). Low multiplicity of infection in vivo results in purifying selection against baculovirus deletion mutants. Journal of General Virology, 89(5), 1220-1224. doi:10.1099/vir.0.83645-0Godfray, H. C. J., O’reilly, D. R., & Briggs, C. J. (1997). A model of Nucleopolyhedrovirus (NPV) population genetics applied to co–occlusion and the spread of the few Polyhedra (FP) phenotype. Proceedings of the Royal Society of London. Series B: Biological Sciences, 264(1380), 315-322. doi:10.1098/rspb.1997.0045Bull, J. C., Godfray, H. C. J., & O’Reilly, D. R. (2001). Persistence of an Occlusion-Negative Recombinant Nucleopolyhedrovirus in Trichoplusia ni Indicates High Multiplicity of Cellular Infection. Applied and Environmental Microbiology, 67(11), 5204-5209. doi:10.1128/aem.67.11.5204-5209.2001Gonzalez-Jara, P., Fraile, A., Canto, T., & Garcia-Arenal, F. (2009). The Multiplicity of Infection of a Plant Virus Varies during Colonization of Its Eukaryotic Host. Journal of Virology, 83(15), 7487-7494. doi:10.1128/jvi.00636-09Gutiérrez, S., Yvon, M., Thébaud, G., Monsion, B., Michalakis, Y., & Blanc, S. (2010). Dynamics of the Multiplicity of Cellular Infection in a Plant Virus. PLoS Pathogens, 6(9), e1001113. doi:10.1371/journal.ppat.1001113Morra, M. R., & Petty, I. T. D. (2000). Tissue Specificity of Geminivirus Infection Is Genetically Determined. The Plant Cell, 12(11), 2259-2270. doi:10.1105/tpc.12.11.2259Silva, M. S., Goldbach, R. W., van Lent, J. W. M., & Wellink, J. (2002). Phloem loading and unloading of Cowpea mosaic virus in Vigna unguiculata. Journal of General Virology, 83(6), 1493-1504. doi:10.1099/0022-1317-83-6-1493Sokal RR, Rohlf FJ (1995) Biometry, 3rd edition. New York: W.H. Freeman and Co. 887 p.Zwart, M. P., Hemerik, L., Cory, J. S., de Visser, J. A. G. M., Bianchi, F. J. J. A., Van Oers, M. M., … Van der Werf, W. (2009). An experimental test of the independent action hypothesis in virus–insect pathosystems. Proceedings of the Royal Society B: Biological Sciences, 276(1665), 2233-2242. doi:10.1098/rspb.2009.0064Dietrich, C. (2003). Fluorescent labelling reveals spatial separation of potyvirus populations in mixed infected Nicotiana benthamiana plants. Journal of General Virology, 84(10), 2871-2876. doi:10.1099/vir.0.19245-0Zwart, M. P., Daròs, J.-A., & Elena, S. F. (2011). One Is Enough: In Vivo Effective Population Size Is Dose-Dependent for a Plant RNA Virus. PLoS Pathogens, 7(7), e1002122. doi:10.1371/journal.ppat.1002122Lafforgue, G., Tromas, N., Elena, S. F., & Zwart, M. P. (2012). Dynamics of the Establishment of Systemic Potyvirus Infection: Independent yet Cumulative Action of Primary Infection Sites. Journal of Virology, 86(23), 12912-12922. doi:10.1128/jvi.02207-12Dolja, V. V., McBride, H. J., & Carrington, J. C. (1992). Tagging of plant potyvirus replication and movement by insertion of beta-glucuronidase into the viral polyprotein. Proceedings of the National Academy of Sciences, 89(21), 10208-10212. doi:10.1073/pnas.89.21.10208Van der Werf, W., Hemerik, L., Vlak, J. M., & Zwart, M. P. (2011). Heterogeneous Host Susceptibility Enhances Prevalence of Mixed-Genotype Micro-Parasite Infections. PLoS Computational Biology, 7(6), e1002097. doi:10.1371/journal.pcbi.1002097Barlow, N. D. (1991). A Spatially Aggregated Disease/Host Model for Bovine Tb in New Zealand Possum Populations. The Journal of Applied Ecology, 28(3), 777. doi:10.2307/2404207Barlow, N. D. (2000). Non-linear transmission and simple models for bovine tuberculosis. Journal of Animal Ecology, 69(4), 703-713. doi:10.1046/j.1365-2656.2000.00428.xR Core Team (2012) R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.Olkin I, Gleser LJ, Derman C. (1994) Probability Models and Applications, 2nd ed. New York: Macmillan. 575 p

    Tetrahymena Metallothioneins Fall into Two Discrete Subfamilies

    Get PDF
    BACKGROUND: Metallothioneins are ubiquitous small, cysteine-rich, multifunctional proteins which can bind heavy metals. METHODOLOGY/PRINCIPAL FINDINGS: We report the results of phylogenetic and gene expression analyses that include two new Tetrahymena thermophila metallothionein genes (MTT3 and MTT5). Sequence alignments of all known Tetrahymena metallothioneins have allowed us to rationalize the structure of these proteins. We now formally subdivide the known metallothioneins from the ciliate genus Tetrahymena into two well defined subfamilies, 7a and 7b, based on phylogenetic analysis, on the pattern of clustering of Cys residues, and on the pattern of inducibility by the heavy metals Cd and Cu. Sequence alignment also reveals a remarkably regular, conserved and hierarchical modular structure of all five subfamily 7a MTs, which include MTT3 and MTT5. The former has three modules, while the latter has only two. Induction levels of the three T. thermophila genes were determined using quantitative real time RT-PCR. Various stressors (including heavy metals) brought about dramatically different fold-inductions for each gene; MTT5 showed the highest fold-induction. Conserved DNA motifs with potential regulatory significance were identified, in an unbiased way, upstream of the start codons of subfamily 7a MTs. EST evidence for alternative splicing in the 3′ UTR of the MTT5 mRNA with potential regulatory activity is reported. CONCLUSION/SIGNIFICANCE: The small number and remarkably regular structure of Tetrahymena MTs, coupled with the experimental tractability of this model organism for studies of in vivo function, make it an attractive system for the experimental dissection of the roles, structure/function relationships, regulation of gene expression, and adaptive evolution of these proteins, as well as for the development of biotechnological applications for the environmental monitoring of toxic substances

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Notes for genera: basal clades of Fungi (including Aphelidiomycota, Basidiobolomycota, Blastocladiomycota, Calcarisporiellomycota, Caulochytriomycota, Chytridiomycota, Entomophthoromycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota and Zoopagomycota)

    Get PDF
    Compared to the higher fungi (Dikarya), taxonomic and evolutionary studies on the basal clades of fungi are fewer in number. Thus, the generic boundaries and higher ranks in the basal clades of fungi are poorly known. Recent DNA based taxonomic studies have provided reliable and accurate information. It is therefore necessary to compile all available information since basal clades genera lack updated checklists or outlines. Recently, Tedersoo et al. (MycoKeys 13:1--20, 2016) accepted Aphelidiomycota and Rozellomycota in Fungal clade. Thus, we regard both these phyla as members in Kingdom Fungi. We accept 16 phyla in basal clades viz. Aphelidiomycota, Basidiobolomycota, Blastocladiomycota, Calcarisporiellomycota, Caulochytriomycota, Chytridiomycota, Entomophthoromycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota and Zoopagomycota. Thus, 611 genera in 153 families, 43 orders and 18 classes are provided with details of classification, synonyms, life modes, distribution, recent literature and genomic data. Moreover, Catenariaceae Couch is proposed to be conserved, Cladochytriales Mozl.-Standr. is emended and the family Nephridiophagaceae is introduced

    Historical Archaeologies of the American West

    Full text link

    Evaluation of appendicitis risk prediction models in adults with suspected appendicitis

    Get PDF
    Background Appendicitis is the most common general surgical emergency worldwide, but its diagnosis remains challenging. The aim of this study was to determine whether existing risk prediction models can reliably identify patients presenting to hospital in the UK with acute right iliac fossa (RIF) pain who are at low risk of appendicitis. Methods A systematic search was completed to identify all existing appendicitis risk prediction models. Models were validated using UK data from an international prospective cohort study that captured consecutive patients aged 16–45 years presenting to hospital with acute RIF in March to June 2017. The main outcome was best achievable model specificity (proportion of patients who did not have appendicitis correctly classified as low risk) whilst maintaining a failure rate below 5 per cent (proportion of patients identified as low risk who actually had appendicitis). Results Some 5345 patients across 154 UK hospitals were identified, of which two‐thirds (3613 of 5345, 67·6 per cent) were women. Women were more than twice as likely to undergo surgery with removal of a histologically normal appendix (272 of 964, 28·2 per cent) than men (120 of 993, 12·1 per cent) (relative risk 2·33, 95 per cent c.i. 1·92 to 2·84; P < 0·001). Of 15 validated risk prediction models, the Adult Appendicitis Score performed best (cut‐off score 8 or less, specificity 63·1 per cent, failure rate 3·7 per cent). The Appendicitis Inflammatory Response Score performed best for men (cut‐off score 2 or less, specificity 24·7 per cent, failure rate 2·4 per cent). Conclusion Women in the UK had a disproportionate risk of admission without surgical intervention and had high rates of normal appendicectomy. Risk prediction models to support shared decision‐making by identifying adults in the UK at low risk of appendicitis were identified

    A new calibration method for charm jet identification validated with proton-proton collision events at √s = 13 TeV

    Get PDF
    ArXiv ePrint: 2111.03027Copyright © 2022 CERN for the benefit of the CMS collaboration. Many measurements at the LHC require efficient identification of heavy-flavour jets, i.e. jets originating from bottom (b) or charm (c) quarks. An overview of the algorithms used to identify c jets is described and a novel method to calibrate them is presented. This new method adjusts the entire distributions of the outputs obtained when the algorithms are applied to jets of different flavours. It is based on an iterative approach exploiting three distinct control regions that are enriched with either b jets, c jets, or light-flavour and gluon jets. Results are presented in the form of correction factors evaluated using proton-proton collision data with an integrated luminosity of 41.5 fb-1 at  √s = 13 TeV, collected by the CMS experiment in 2017. The closure of the method is tested by applying the measured correction factors on simulated data sets and checking the agreement between the adjusted simulation and collision data. Furthermore, a validation is performed by testing the method on pseudodata, which emulate various mismodelling conditions. The calibrated results enable the use of the full distributions of heavy-flavour identification algorithm outputs, e.g. as inputs to machine-learning models. Thus, they are expected to increase the sensitivity of future physics analyses.SCOAP
    corecore