657 research outputs found

    The far-ultraviolet main auroral emission at Jupiter - Part 1:dawn-dusk brightness asymmetries

    Get PDF
    The main auroral emission at Jupiter generally appears as a quasi-closed curtain centered around the magnetic pole. This auroral feature, which accounts for approximately half of the total power emitted by the aurorae in the ultraviolet range, is related to corotation enforcement currents in the middle magnetosphere. Early models for these currents assumed axisymmetry, but significant local time variability is obvious on any image of the Jovian aurorae. Here we use far-UV images from the Hubble Space Telescope to further characterize these variations on a statistical basis. We show that the dusk side sector is ~ 3 times brighter than the dawn side in the southern hemisphere and ~ 1.1 brighter in the northern hemisphere, where the magnetic anomaly complicates the interpretation of the measurements. We suggest that such an asymmetry between the dawn and the dusk sectors could be the result of a partial ring current in the nightside magnetosphere

    Auroral signatures of multiple magnetopause reconnection at Saturn

    Get PDF
    Auroral observations capture the ionospheric response to dynamics of the whole magnetosphere and may provide evidence of the significance of reconnection at Saturn. Bifurcations of the main dayside auroral emission have been related to reconnection at the magnetopause and their surface is suggested to represent the amount of newly opened flux. This work is the first presentation of multiple brightenings of these auroral features based on Cassini ultraviolet auroral observations. In analogy to the terrestrial case, we propose a process, in which a magnetic flux tube reconnects with other flux tubes at multiple sites. This scenario predicts the observed multiple brightenings, it is consistent with subcorotating auroral features which separate from the main emission, and it suggests north-south auroral asymmetries. We demonstrate that the conditions for multiple magnetopause reconnection can be satisfied at Saturn, like at Earth

    The far-ultraviolet main auroral emission at Jupiter – Part 2:vertical emission profile

    Get PDF
    The aurorae at Jupiter are made up of many different features associated with a variety of generation mechanisms. The main auroral emission, also known as the main oval, is the most prominent of them as it accounts for approximately half of the total power emitted by the aurorae in the ultraviolet range. The energy of the precipitating electrons is a crucial parameter to characterize the processes at play which give rise to these auroral emissions, and the altitude of the emissions directly depends on this energy. Here we make use of far-UV (FUV) images acquired with the Advanced Camera for Surveys on board the Hubble Space Telescope and spectra acquired with the Space Telescope Imaging Spectrograph to measure the vertical profile of the main emissions. The altitude of the brightness peak as seen above the limb is ~ 400 km, which is significantly higher than the 250 km measured in the post-dusk sector by Galileo in the visible domain. However, a detailed analysis of the effect of hydrocarbon absorption, including both simulations and FUV spectral observations, indicates that FUV apparent vertical profiles should be considered with caution, as these observations are not incompatible with an emission peak located at 250 km. The analysis also calls for spectral observations to be carried out with an optimized geometry in order to remove observational ambiguities

    Intra-guild spatial niche overlap among three small falcon species in an area of recent sympatry

    Get PDF
    Climate warming and land-use change are reshuffling the distribution of wild organisms on a global scale. Some species may expand their ranges and colonize new regions, which may greatly affect ecological interactions among pre-existing species and colonizers. In the last decades, such processes have originated a unique condition of sympatry among three Eurasian small Falco species (common kestrel F. tinnunculus, lesser kestrel F. naumanni, red-footed falcon F. vespertinus) in the intensively cultivated farmland habitats of the Po Plain (Northern Italy). This provides an excellent opportunity to investigate patterns of spatial niche overlap during the initial phases of the establishment of sympatry. To investigate spatial niche overlap of the three falcon species, we relied on Environmental Niche Models (ENMs) based on widespread breeding occurrence data obtained through field surveys and citizen science programs (during the 2018-2020 period). ENMs were based on bioclimatic and land-use variables in an ensemble modelling framework. We estimated species-specific relative contributions of each climatic and land-use variable and its response curves effect. Eventually, we generated spatial correlation maps of the potential species' distributions to derive spatially-explicit predictions of potential co-occurrence areas among the three species. Overall, eco-climatic determinants of the distribution of lesser kestrel and red-footed falcon were similar, resulting in a strong association with intensive arable lands and dry continental climate. Consistently, we found a high spatial correlation between the suitability maps of the two species, with highly suitable areas located in the Central-Eastern area of the Po Plain, corresponding to the core range of both species. Conversely, the common kestrel emerged as a habitat generalist and was widely distributed throughout the Po Plain. Our findings suggest that the recent sympatry between lesser kestrels and red-footed falcons in the Po Plain may promote ecological interactions and intra-guild competition

    Dynamic auroral storms on Saturn as observed by the Hubble Space Telescope

    Get PDF
    We present observations of significant dynamics within two UV auroral storms observed on Saturn using the Hubble Space Telescope in April/May 2013. Specifically, we discuss bursts of auroral emission observed at the poleward boundary of a solar wind-induced auroral storm, propagating at ∼330% rigid corotation from near ∼01 h LT toward ∼08 h LT. We suggest that these are indicative of ongoing, bursty reconnection of lobe flux in the magnetotail, providing strong evidence that Saturn’s auroral storms are caused by large-scale flux closure. We also discuss the later evolution of a similar storm and show that the emission maps to the trailing region of an energetic neutral atom enhancement. We thus identify the auroral form with the upward field-aligned continuity currents flowing into the associated partial ring current
    corecore