96 research outputs found

    Investigation of baroclinic tides in the northern South China Sea

    Get PDF
    Baroclinic tides result from the interaction of barotropic tides with topography in stratified oceans. They play an important role in driving deep ocean mixing. In this research, investigations of the dynamics of baroclinic tides and internal solitary waves (ISWs) in the northern South China Sea (SCS) are conducted, mainly by means of the Massachusetts Institute of Technology general circulation model (MITgcm). Firstly, simulations of internal wave generation at the Luzon Strait (LS) are carried out. By conducting three-dimensional (3D), high-resolution experiments, it was found that the generated wave field features a multi-modal structure: large, pronounced ISWs of first mode (amplitude ~120 m) and second mode (amplitude ~120 m) were reproduced. The two north-south aligned ridges in the LS contribute together to the generation of the second mode ISWs, whereas the easternmost ridge of the two is responsible for the first mode ISWs. It was found that multiple generation mechanisms of internal waves could occur in this region, and overall it belongs to a mixed lee wave regime. A specific type of short internal waves arose during the 3D simulation. These ride on a second mode ISW with similar phase speed, trailing a first mode ISW. The short waves possess wavelengths of ~1.5 km and amplitudes of ~20 m, and only show up in the upper layer up to a depth of ~500 m. Scrutiny of the generation process showed that these short waves appear in two distinct regions and are produced due to two mechanisms, namely, the disintegration of an inclined baroclinic bore near the LS, and the overtaking of a second mode ISW in the deep water by a faster first mode ISW. Robust evidence has been sought from satellite imagery and by solving the theoretical Taylor-Goldstein Equation to verify their existence. The effects of superposition of multiple tidal harmonics (diurnal and semidiurnal) on the resultant ISW generation were investigated. It was first found that, by analyzing historical observational data, the occurrence of ISWs in the far-field always follow strong semidiurnal barotropic tidal peaks in the LS, regardless of whether it is the maximum for the diurnal or total tidal strength. However, modelling results of MITgcm and a linear internal tide generation model demonstrate that the diurnal tidal harmonics modulate the arrival time and amplitude of the propagating ISWs. Specifically, it leads to the emergence of the so-called A and B type ISWs and an alternation and transition between the two. Secondly, the shoaling process of ISWs in the northern SCS slope-shelf area is investigated. A series of two-dimensional (2D) experiments are set up to study the shoaling of a large-amplitude second mode concave ISW over a linear slope that resembles the SCS slope. Modelling results show that a strong transformation of the wave profile starts to take place when the wave is approaching the shelf break. A convex type wave is born at the trailing edge of the incident wave and gradually disintegrates into a group of ISWs due to the steepening of the rear wave profile. The frontal face of the wave gets flatter when travelling on the slope, but forms a steep structure right above the shelf break. However, this steep structure shows no tendency to evolve into an ISW: instead, it gets increasingly flat again while evolving on the shelf. The trailing convex wave packet travels faster and merges with the frontal concave wave. Finally, a wave packet with rank-ordered convex ISWs moves forward steadily on the shelf. Energy transfer to the ambient modes is evident, as both first mode and higher modes are clearly seen during and after the shoaling process. First mode ISW evolution is studied too by performing 3D, high-resolution experiments over the wide northern SCS slope and shelf area. It was found that the wave profiles change drastically near the shelf break and the Dongsha Atoll. In agreement with satellite imagery, the wavefront of the leading ISW becomes more spatially oblique with respect to its original orientation as it progresses westward due to the inclination of the slope in the topography. Wave disintegration is prominent in the shallow water zone, and wave polarity reverses near the turning point (at the 130 m isobath), which is consistent with the predictions of weakly nonlinear theory. A series of 2D experiments were set up to inspect the effects of rotation on the shoaling ISW. The results indicate that under the rotation, upon reaching the continental shelf, one shoaling ISW could disintegrate into one ISW packet and one secondary solibore that contains a number of rank-ordered waves with much shorter wavelength than an ISW. The secondary solibore is very pronounced in the northern portion of the northern SCS slope and shelf, but could hardly be discerned in the southern portion, which is consistent with the outcome of 3D simulations.China Scholarship Counci

    Arctic Ocean Simulations in the CMIP6 Ocean Model Intercomparison Project (OMIP)

    Get PDF
    oai:publications.copernicus.org:gmdd107357Arctic Ocean simulations in 19 global ocean-sea ice models participating in the Ocean Model Intercomparison Project (OMIP) of the CMIP6 are evaluated in this paper. Our results indicate that no significant improvements were achieved in the Arctic Ocean simulations from the previous Coordinated Ocean-ice Reference Experiments phase II (CORE-II) to the current OMIP. Large model biases and inter-model spread exist in the simulated mean state of the halocline and Atlantic Water layer in the OMIP models. Most of the OMIP models suffer from too thick and deep Atlantic Water layer, too deep halocline base, and large fresh biases in the halocline. The OMIP models largely agree on the inter-annual and decadal variability of the Arctic Ocean freshwater content and volume/heat/freshwater transports through the Arctic Ocean gateways. The models can reproduce observed changes in volume, heat and freshwater transports through the gateways except for the Bering Strait. Overall, the performance of the Arctic Ocean simulations is similar between the CORE2-forced OMIP-1 and JRA55-do-forced OMIP-2.</p

    Atlantic circulation changes across a stadial-interstadial transition

    Get PDF
    We combine consistently dated benthic carbon isotopic records distributed over the entire Atlantic Ocean with numerical simulations performed by a glacial configuration of the Norwegian Earth System Model with active ocean biogeochemistry, in order to interpret the observed Cibicides &delta;13C changes at the stadial-interstadial transition corresponding to the end of Heinrich Stadial 4 (HS4) in terms of ocean circulation and remineralization changes. We show that the marked increase in Cibicides &delta;13C observed at the end of HS4 between ~2000 and 4200 m in the Atlantic can be explained by changes in nutrient concentrations as simulated by the model in response to the halting of freshwater input in the high latitude glacial North Atlantic. Our model results show that this Cibicides &delta;13C signal is associated with changes in the ratio of southern-sourced (SSW) versus northern-sourced (NSW) water masses at the core sites, whereby SSW is replaced by NSW as a consequence of the resumption of deep water formation in the northern North Atlantic and Nordic Seas after the freshwater input is halted. Our results further suggest that the contribution of ocean circulation changes to this signal increases from ~40 % at 2000 m to ~80 % at 4000 m. Below ~4200 m, the model shows little ocean circulation change but an increase in remineralization across the transition marking the end of HS4. The simulated lower remineralization during stadials than interstadials is particularly pronounced in deep subantarctic sites, in agreement with the decrease in the export production of carbon to the deep Southern Ocean during stadials found in previous studies.</p

    NorCPM1 and its contribution to CMIP6 DCPP

    Get PDF
    The Norwegian Climate Prediction Model version 1 (NorCPM1) is a new research tool for performing climate reanalyses and seasonal-to-decadal climate predictions. It combines the Norwegian Earth System Model version 1 (NorESM1) – which features interactive aerosol-cloud schemes and an isopycnic-coordinate ocean component with biogeochemistry – with anomaly assimilation of SST and T/S-profile observations using the Ensemble Kalman Filter (EnKF).publishedVersio

    The hydrological cycle and ocean circulation of the Maritime Continent in the Pliocene: results from PlioMIP2

    Get PDF
    The Maritime Continent (MC) forms the western boundary of the tropical Pacific Ocean, and relatively small changes in this region can impact the climate locally and remotely. In the mid-Piacenzian warm period of the Pliocene (mPWP; 3.264 to 3.025 Ma) atmospheric CO2 concentrations were ∌ 400 ppm, and the subaerial Sunda and Sahul shelves made the land–sea distribution of the MC different to today. Topographic changes and elevated levels of CO2, combined with other forcings, are therefore expected to have driven a substantial climate signal in the MC region at this time. By using the results from the Pliocene Model Intercomparison Project Phase 2 (PlioMIP2), we study the mean climatic features of the MC in the mPWP and changes in Indonesian Throughflow (ITF) with respect to the preindustrial. Results show a warmer and wetter mPWP climate of the MC and lower sea surface salinity in the surrounding ocean compared with the preindustrial. Furthermore, we quantify the volume transfer through the ITF; although the ITF may be expected to be hindered by the subaerial shelves, 10 out of 15 models show an increased volume transport compared with the preindustrial. In order to avoid undue influence from closely related models that are present in the PlioMIP2 ensemble, we introduce a new metric, the multi-cluster mean (MCM), which is based on cluster analysis of the individual models. We study the effect that the choice of MCM versus the more traditional analysis of multi-model mean (MMM) and individual models has on the discrepancy between model results and data. We find that models, which reproduce modern MC climate well, are not always good at simulating the mPWP climate anomaly of the MC. By comparing with individual models, the MMM and MCM reproduce the preindustrial sea surface temperature (SST) of the reanalysis better than most individual models and produce less discrepancy with reconstructed sea surface temperature anomalies (SSTA) than most individual models in the MC. In addition, the clusters reveal spatial signals that are not captured by the MMM, so that the MCM provides us with a new way to explore the results from model ensembles that include similar models

    Evaluation of global ocean–sea-ice model simulations based on the experimental protocols of the Ocean Model Intercomparison Project phase 2 (OMIP-2)

    Get PDF
    We present a new framework for global ocean–sea-ice model simulations based on phase 2 of the Ocean Model Intercomparison Project (OMIP-2), making use of the surface dataset based on the Japanese 55-year atmospheric reanalysis for driving ocean–sea-ice models (JRA55-do). We motivate the use of OMIP-2 over the framework for the first phase of OMIP (OMIP-1), previously referred to as the Coordinated Ocean–ice Reference Experiments (COREs), via the evaluation of OMIP-1 and OMIP-2 simulations from 11 state-of-the-science global ocean–sea-ice models. In the present evaluation, multi-model ensemble means and spreads are calculated separately for the OMIP-1 and OMIP-2 simulations and overall performance is assessed considering metrics commonly used by ocean modelers. Both OMIP-1 and OMIP-2 multi-model ensemble ranges capture observations in more than 80 % of the time and region for most metrics, with the multi-model ensemble spread greatly exceeding the difference between the means of the two datasets. Many features, including some climatologically relevant ocean circulation indices, are very similar between OMIP-1 and OMIP-2 simulations, and yet we could also identify key qualitative improvements in transitioning from OMIP-1 to OMIP-2. For example, the sea surface temperatures of the OMIP-2 simulations reproduce the observed global warming during the 1980s and 1990s, as well as the warming slowdown in the 2000s and the more recent accelerated warming, which were absent in OMIP-1, noting that the last feature is part of the design of OMIP-2 because OMIP-1 forcing stopped in 2009. A negative bias in the sea-ice concentration in summer of both hemispheres in OMIP-1 is significantly reduced in OMIP-2. The overall reproducibility of both seasonal and interannual variations in sea surface temperature and sea surface height (dynamic sea level) is improved in OMIP-2. These improvements represent a new capability of the OMIP-2 framework for evaluating process-level responses using simulation results. Regarding the sensitivity of individual models to the change in forcing, the models show well-ordered responses for the metrics that are directly forced, while they show less organized responses for those that require complex model adjustments. Many of the remaining common model biases may be attributed either to errors in representing important processes in ocean–sea-ice models, some of which are expected to be reduced by using finer horizontal and/or vertical resolutions, or to shared biases and limitations in the atmospheric forcing. In particular, further efforts are warranted to resolve remaining issues in OMIP-2 such as the warm bias in the upper layer, the mismatch between the observed and simulated variability of heat content and thermosteric sea level before 1990s, and the erroneous representation of deep and bottom water formations and circulations. We suggest that such problems can be resolved through collaboration between those developing models (including parameterizations) and forcing datasets. Overall, the present assessment justifies our recommendation that future model development and analysis studies use the OMIP-2 framework.This research has been supported by the Integrated Research Program for Advancing Climate Models (TOUGOU) of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan (grant nos. JPMXD0717935457 and JPMXD0717935561), the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) (grant no. 274762653), the Helmholtz Climate Initiative REKLIM (Regional Climate Change) and European Union's Horizon 2020 Research & Innovation program (grant nos. 727862 and 800154), the Research Council of Norway (EVA (grant no. 229771) and INES (grant no. 270061)), the US National Science Foundation (NSF) (grant no. 1852977), the National Natural Science Foundation of China (grant nos. 41931183 and 41976026), NOAA's Science Collaboration Program and administered by UCAR's Cooperative Programs for the Advancement of Earth System Science (CPAESS) (grant nos. NA16NWS4620043 and NA18NWS4620043B), and NOAA (grant no. NA18OAR4320123).Peer ReviewedPostprint (published version

    Evaluation of global ocean–sea-ice model simulations based on the experimental protocols of the Ocean Model Intercomparison Project phase 2 (OMIP-2)

    Get PDF
    We present a new framework for global ocean- sea-ice model simulations based on phase 2 of the Ocean Model Intercomparison Project (OMIP-2), making use of the surface dataset based on the Japanese 55-year atmospheric reanalysis for driving ocean-sea-ice models (JRA55-do).We motivate the use of OMIP-2 over the framework for the first phase of OMIP (OMIP-1), previously referred to as the Coordinated Ocean-ice Reference Experiments (COREs), via the evaluation of OMIP-1 and OMIP-2 simulations from 11 state-of-the-science global ocean-sea-ice models. In the present evaluation, multi-model ensemble means and spreads are calculated separately for the OMIP-1 and OMIP-2 simulations and overall performance is assessed considering metrics commonly used by ocean modelers. Both OMIP-1 and OMIP-2 multi-model ensemble ranges capture observations in more than 80% of the time and region for most metrics, with the multi-model ensemble spread greatly exceeding the difference between the means of the two datasets. Many features, including some climatologically relevant ocean circulation indices, are very similar between OMIP-1 and OMIP- 2 simulations, and yet we could also identify key qualitative improvements in transitioning from OMIP-1 to OMIP- 2. For example, the sea surface temperatures of the OMIP- 2 simulations reproduce the observed global warming during the 1980s and 1990s, as well as the warming slowdown in the 2000s and the more recent accelerated warming, which were absent in OMIP-1, noting that the last feature is part of the design of OMIP-2 because OMIP-1 forcing stopped in 2009. A negative bias in the sea-ice concentration in summer of both hemispheres in OMIP-1 is significantly reduced in OMIP-2. The overall reproducibility of both seasonal and interannual variations in sea surface temperature and sea surface height (dynamic sea level) is improved in OMIP-2. These improvements represent a new capability of the OMIP-2 framework for evaluating processlevel responses using simulation results. Regarding the sensitivity of individual models to the change in forcing, the models show well-ordered responses for the metrics that are directly forced, while they show less organized responses for those that require complex model adjustments. Many of the remaining common model biases may be attributed either to errors in representing important processes in ocean-sea-ice models, some of which are expected to be reduced by using finer horizontal and/or vertical resolutions, or to shared biases and limitations in the atmospheric forcing. In particular, further efforts are warranted to resolve remaining issues in OMIP-2 such as the warm bias in the upper layer, the mismatch between the observed and simulated variability of heat content and thermosteric sea level before 1990s, and the erroneous representation of deep and bottom water formations and circulations. We suggest that such problems can be resolved through collaboration between those developing models (including parameterizations) and forcing datasets. Overall, the present assessment justifies our recommendation that future model development and analysis studies use the OMIP-2 framework

    Evaluation of Arctic warming in mid-Pliocene climate simulations

    Get PDF
    Palaeoclimate simulations improve our understanding of the climate, inform us about the performance of climate models in a different climate scenario, and help to identify robust features of the climate system. Here, we analyse Arctic warming in an ensemble of 16 simulations of the mid-Pliocene Warm Period (mPWP), derived from the Pliocene Model Intercomparison Project Phase 2 (PlioMIP2). The PlioMIP2 ensemble simulates Arctic (60–90∘ N) annual mean surface air temperature (SAT) increases of 3.7 to 11.6 ∘C compared to the pre-industrial period, with a multi-model mean (MMM) increase of 7.2 ∘C. The Arctic warming amplification ratio relative to global SAT anomalies in the ensemble ranges from 1.8 to 3.1 (MMM is 2.3). Sea ice extent anomalies range from −3.0 to −10.4×106 km2, with a MMM anomaly of −5.6×106 km2, which constitutes a decrease of 53 % compared to the pre-industrial period. The majority (11 out of 16) of models simulate summer sea-ice-free conditions (≀1×106 km2) in their mPWP simulation. The ensemble tends to underestimate SAT in the Arctic when compared to available reconstructions, although the degree of underestimation varies strongly between the simulations. The simulations with the highest Arctic SAT anomalies tend to match the proxy dataset in its current form better. The ensemble shows some agreement with reconstructions of sea ice, particularly with regard to seasonal sea ice. Large uncertainties limit the confidence that can be placed in the findings and the compatibility of the different proxy datasets. We show that while reducing uncertainties in the reconstructions could decrease the SAT data–model discord substantially, further improvements are likely to be found in enhanced boundary conditions or model physics. Lastly, we compare the Arctic warming in the mPWP to projections of future Arctic warming and find that the PlioMIP2 ensemble simulates greater Arctic amplification than CMIP5 future climate simulations and an increase instead of a decrease in Atlantic Meridional Overturning Circulation (AMOC) strength compared to pre-industrial period. The results highlight the importance of slow feedbacks in equilibrium climate simulations, and that caution must be taken when using simulations of the mPWP as an analogue for future climate change
    • 

    corecore