184 research outputs found

    On the universality of the fluctuation-dissipation ratio in non-equilibrium critical dynamics

    Full text link
    The two-time nonequilibrium correlation and response functions in 1D kinetic classical spin systems with non-conserved dynamics and quenched to their zero-temperature critical point are studied. The exact solution of the kinetic Ising model with Glauber dynamics for a wide class of initial states allows for an explicit test of the universality of the non-equilibrium limit fluctuation-dissipation ratio X_{\infty}. It is shown that the value of X_{\infty} depends on whether the initial state has finitely many domain walls or not and thus two distinct dynamic universality classes can be identified in this model. Generic 1D kinetic spin systems with non-conserved dynamics fall into the same universality classes as the kinetic Glauber-Ising model provided the dynamics is invariant under the C-symmetry of simultaneous spin and magnetic-field reversal. While C-symmetry is satisfied for magnetic systems, it need not be for lattice gases which may therefore display hitherto unexplored types of non-universal kinetics

    Prospective cohort study using the breast cancer spheroid model as a predictor for response to neoadjuvant therapy--the SpheroNEO study

    Get PDF
    Background Aim of this prospective study was to predict response to neoadjuvant therapy in breast cancer patients using an in vitro breast cancer spheroid model. Methods Three-dimensional spheroids were directly generated from fresh breast tumor biopsies of 78 patients eligible for neoadjuvant therapy. Cell survival was measured after in vitro exposure to the equivalent therapeutic agents in the breast cancer spheroid model. Treatment results in vitro were correlated with pathological complete response (pCR, i.e. ypT0 ypN0) determined at surgery. Results A mean cell survival of 21.8 % was found in the breast cancer spheroid model for 22 patients with pCR versus 63.8 % in 56 patients without pCR (P = .001). The area under the receiver operator characteristic curve to predict pCR was 0.86 (95 % CI: 0.77 to 0.96) for cell survival in vitro compared to 0.80 (95 % CI: 0.70 to 0.90) for a combined model of conventional factors (hormone- and HER2 receptor, and age). A cutoff at 35 % cell survival for the spheroid model was proposed. Out of the 32 patients with values below this threshold, 21 patients (65.6 %) and one patient (2.2 %) with a cell survival greater than 35 % achieved pCR respectively; (sensitivity 95.5 % (95 % CI: 0.86 to 1.00); specificity 80.4 % (95 % CI: 0.70 to 0.91)). Extent of residual disease positively correlated with increased cell survival (P = .021). Conclusion The breast cancer spheroid model proved to be a highly sensitive and specific predictor for pCR after neoadjuvant chemotherapy in breast cancer patients

    Facile Synthesis of Hierarchical CuS and CuCo2S4 Structures from an Ionic Liquid Precursor for Electrocatalysis Applications

    Get PDF
    Covellite phase CuS and carrollite phase CuCo2S4 nano and microstructures were synthesized from tetrachloridometallate based ionic liquid precursors using a novel, facile, and highly controllable hot injection synthesis strategy. The synthesis parameters including reaction time and temperature were first optimized to produce CuS with a well controlled and unique morphology, providing the best electrocatalytic activity toward the oxygen evolution reaction OER . In an extension to this approach, the electrocatalytic activity was further improved by incorporating Co into the CuS synthesis method to yield CuCo2S4 microflowers. Both routes provide high microflower yields of gt;80 wt . The CuCo2S4 microflowers exhibit a superior performance for the OER in alkaline medium compared to CuS. This is demonstrated by a lower onset potential amp; 8764;1.45 V vs RHE 10 mA cm2 , better durability, and higher turnover frequencies compared to bare CuS flowers or commercial Pt C and IrO2 electrodes. Likely, this effect is associated with the presence of Co3 sites on which a better adsorption of reactive species formed during the OER e.g., OH, O, OOH, etc. can be achieved, thus reducing the OER charge transfer resistance, as indicated by X ray photoelectron spectroscopy and electrochemical impedance spectroscopy measurement

    Voxel-based, brain-wide association study of aberrant functional connectivity in schizophrenia implicates thalamocortical circuitry

    Get PDF
    Background: Wernicke\u27s concept of \u27sejunction\u27 or aberrant associations among specialized brain regions is one of the earliest hypotheses attempting to explain the myriad of symptoms in psychotic disorders. Unbiased data mining of all possible brain-wide connections in large data sets is an essential first step in localizing these aberrant circuits. Methods: We analyzed functional connectivity using the largest resting-state neuroimaging data set reported to date in the schizophrenia literature (415 patients vs. 405 controls from UK, USA, Taiwan, and China). An exhaustive brain-wide association study at both regional and voxel-based levels enabled a continuous data-driven discovery of the key aberrant circuits in schizophrenia. Results: Results identify the thalamus as the key hub for altered functional networks in patients. Increased thalamus-primary somatosensory cortex connectivity was the most significant aberration in schizophrenia (P=10-18). Overall, a number of thalamic links with motor and sensory cortical regions showed increased connectivity in schizophrenia, whereas thalamo-frontal connectivity was weakened. Network changes were correlated with symptom severity and illness duration, and support vector machine analysis revealed discrimination accuracies of 73.53-80.92%. Conclusions: Widespread alterations in resting-state thalamocortical functional connectivity is likely to be a core feature of schizophrenia that contributes to the extensive sensory, motor, cognitive, and emotional impairments in this disorder. Changes in this schizophrenia-associated network could be a reliable mechanistic index to discriminate patients from healthy controls

    Carbon dioxide-water-silicate mineral reactions enhance CO2 storage : evidence from produced fluid measurements and geochemical modeling at the IEA Weyburn-Midale project

    Get PDF
    At the International Energy Agency Greenhouse Gas (IEA GHG) Weyburn-Midale Project in Saskatchewan, Canada, CO2 storage research takes place alongside CO2 enhanced oil recovery (EOR) in the Weyburn oil field. Over four years of production well monitoring at Weyburn, measured changes in chemical and isotopic data for produced aqueous fluids and gases (i.e. an increase in Ca2+, Mg2+, K+, SO42-, HCO3-, and CO2 concentration and a decrease in δ13CHCO3- and δ13CCO2 values), confirm the integrity of CO2 storage, trace CO2 migration and dissolution in the reservoir fluids, and record a range of water-rock- CO2 reactions including carbonate mineral dissolution and alteration of K-feldspar. K-feldspar alteration buffers the pH decrease resulting from CO2 injection, enhances aqueous CO2 storage as HCO3- (ionic trapping) and can lead to mineral storage of CO2 as CaCO3. Geochemical reaction path simulations of the water-mineral- CO2 system reproduce the changes in measured data observed over the first few years, confirming proposed reaction pathways and rates. Extension of these history matched reaction path simulations over 100s of years shows that alteration of K-feldspar and other silicate minerals present in the Weyburn reservoir will lead to further storage of injected CO2 in the aqueous phase and as carbonate minerals

    The nuclear receptor PPARγ selectively inhibits Th17 differentiation in a T cell–intrinsic fashion and suppresses CNS autoimmunity

    Get PDF
    T helper cells secreting interleukin (IL)-17 (Th17 cells) play a crucial role in autoimmune diseases like multiple sclerosis (MS). Th17 differentiation, which is induced by a combination of transforming growth factor (TGF)-β/IL-6 or IL-21, requires expression of the transcription factor retinoic acid receptor–related orphan receptor γt (RORγt). We identify the nuclear receptor peroxisome proliferator–activated receptor γ (PPARγ) as a key negative regulator of human and mouse Th17 differentiation. PPARγ activation in CD4+ T cells selectively suppressed Th17 differentiation, but not differentiation into Th1, Th2, or regulatory T cells. Control of Th17 differentiation by PPARγ involved inhibition of TGF-β/IL-6–induced expression of RORγt in T cells. Pharmacologic activation of PPARγ prevented removal of the silencing mediator for retinoid and thyroid hormone receptors corepressor from the RORγt promoter in T cells, thus interfering with RORγt transcription. Both T cell–specific PPARγ knockout and endogenous ligand activation revealed the physiological role of PPARγ for continuous T cell–intrinsic control of Th17 differentiation and development of autoimmunity. Importantly, human CD4+ T cells from healthy controls and MS patients were strongly susceptible to PPARγ-mediated suppression of Th17 differentiation. In summary, we report a PPARγ-mediated T cell–intrinsic molecular mechanism that selectively controls Th17 differentiation in mice and in humans and that is amenable to pharmacologic modulation. We therefore propose that PPARγ represents a promising molecular target for specific immunointervention in Th17-mediated autoimmune diseases such as MS

    International money markets: eurocurrencies

    Get PDF
    Eurocurrencies are international markets for short-term wholesale bank deposits and loans. They emerged in Western Europe in the late 1950s and rapidly reached a global scale. A Eurocurrency is a form of bank money: an unsecured short-term bank debt denominated in a currency (for instance, US dollars) but issued by banks operating offshore, in a geographical location or a legal space situated outside of the jurisdiction of the national authorities presiding over that currency (for instance, the Federal Reserve). In Eurocurrency markets, banks intermediate mainly between foreign residents. They borrow funds by "accepting" foreign currency deposits and lend foreign currency-denominated funds by "placing" deposits with other banks, by granting short-term loans or investing in other liquid assets. Historically, Eurodollars accounted for the largest share of Eurocurrencies, although other international currencies (Deutsche Marks, Japanese yens, and especially Euros since 1999) played an important role. Eurocurrency markets were a manifestation of financial integration and interdependence in a globalizing economy and performed critical functions in the distribution and creation of international liquidity. At the same time, their fast growth was a recurrent source of concerns for central bankers and policymakers due to their implications for macroeconomic policies and financial stability. This chapter analyzes different aspects of the historical development of Eurocurrency markets and their role in the international monetary and financial system. The first part discusses theoretical interpretations, presents estimates of markets' size, describes their structure, and explains the determinants of their growth. The second part analyzes the spread between Eurodollar rates and other US money market rates, the role of arbitrage, the evolution of risk factors, and the causes of historical episodes of stress and contagion in the interbank market. The last part discusses political economy issues, such as the role of governments and market forces in the emergence of Eurodollars in the 1950s and the failed attempts to impose multilateral controls on Eurocurrency markets in the 1970s

    Impact of Marine Drugs on Animal Reproductive Processes

    Get PDF
    The discovery and description of bioactive substances from natural sources has been a research topic for the last 50 years. In this respect, marine animals have been used to extract many new compounds exerting different actions. Reproduction is a complex process whose main steps are the production and maturation of gametes, their activation, the fertilisation and the beginning of development. In the literature it has been shown that many substances extracted from marine organisms may have profound influence on the reproductive behaviour, function and reproductive strategies and survival of species. However, despite the central importance of reproduction and thus the maintenance of species, there are still few studies on how reproductive mechanisms are impacted by marine bioactive drugs. At present, studies in either marine and terrestrial animals have been particularly important in identifying what specific fine reproductive mechanisms are affected by marine-derived substances. In this review we describe the main steps of the biology of reproduction and the impact of substances from marine environment and organisms on the reproductive processes

    ENIGMA and global neuroscience: A decade of large-scale studies of the brain in health and disease across more than 40 countries

    Get PDF
    This review summarizes the last decade of work by the ENIGMA (Enhancing NeuroImaging Genetics through Meta Analysis) Consortium, a global alliance of over 1400 scientists across 43 countries, studying the human brain in health and disease. Building on large-scale genetic studies that discovered the first robustly replicated genetic loci associated with brain metrics, ENIGMA has diversified into over 50 working groups (WGs), pooling worldwide data and expertise to answer fundamental questions in neuroscience, psychiatry, neurology, and genetics. Most ENIGMA WGs focus on specific psychiatric and neurological conditions, other WGs study normal variation due to sex and gender differences, or development and aging; still other WGs develop methodological pipelines and tools to facilitate harmonized analyses of "big data" (i.e., genetic and epigenetic data, multimodal MRI, and electroencephalography data). These international efforts have yielded the largest neuroimaging studies to date in schizophrenia, bipolar disorder, major depressive disorder, post-traumatic stress disorder, substance use disorders, obsessive-compulsive disorder, attention-deficit/hyperactivity disorder, autism spectrum disorders, epilepsy, and 22q11.2 deletion syndrome. More recent ENIGMA WGs have formed to study anxiety disorders, suicidal thoughts and behavior, sleep and insomnia, eating disorders, irritability, brain injury, antisocial personality and conduct disorder, and dissociative identity disorder. Here, we summarize the first decade of ENIGMA's activities and ongoing projects, and describe the successes and challenges encountered along the way. We highlight the advantages of collaborative large-scale coordinated data analyses for testing reproducibility and robustness of findings, offering the opportunity to identify brain systems involved in clinical syndromes across diverse samples and associated genetic, environmental, demographic, cognitive, and psychosocial factors
    corecore