48 research outputs found

    Receiver architecture of the thousand-element array (THEA)

    Get PDF
    As part of the development of a new international radio-telescope SKA (Square Kilometre Array), an outdoor phasedarray prototype, the THousand Element Array (THEA), is being developed at NFRA. THEA is a phased array with 1024 active elements distributed on a regular grid over a surface of approximately 16 m2. The array is organised into 16 units denoted as tiles. THEA operates in the frequency band from 750 to 1500 MHz.\ud On a tile the signals from 64 antenna elements are converted into two independent RF beams. Two times 16 beams can be made simultaneously with full sensitivity by the real-time digital beam former of the THEA system. At the output of each tile the analog RF signal from a beam is converted into a 2 × 12-bit digital quadrature representation by a receiver system.\ud A double super-heterodyne architecture is used to mix the signal band of interest to an intermediate frequency of 210 MHz. The IF-signal is shifted to baseband by means of a partly digitally implemented I/Q mixer scheme. After a quadrature mixer stage, the I and Q signals are digitised by means of 12 bit A/D converters at 40 MS/s. Implementing a part of the mixing scheme digitally offers the flexibility to use different I/Q architectures, e.g. Hartley and Weaver mixer setups. This way the effect of RFI in different mixing architectures can be analyzed. After the digital processing, the samples are multiplexed, serialised and transported over fibres to the central adaptive digital beam former unit where the signals from all tiles are combined giving 32 beams.\ud This paper focuses on the design choices and the final implementation of the THEA system. In particular, the receiver architecture is addressed. A digital solution is presented, which enables switching between a Hartley and a Weaver based mixer scheme

    Growth references for height, weight and body mass index of twins aged 0–2.5 years.

    Get PDF
    Aim: To determine the size of the growth deficit in Dutch monozygotic and dizygotic twins aged 0-2.5 years as compared to singletons and to construct reference growth charts for twins. Methods: Growth of twins was studied using longitudinal data on over 4000 twins aged 0-2.5 years of the Netherlands Twin Register. The LMS method was used to obtain growth references for length/height, weight, and body mass index (BMI) for twins. Results: During the first 2.5 years of age, differences in length/height and weight between twins and singletons decrease but do not disappear. BMI of twins deviates less than that of singletons. Approximately half of the growth retardation from birth until 1.5 years of age was attributable to gestational age. Between 1.5 years and 2.5 years of age, this difference was reduced to one-third. Thus, a substantial part of the growth difference could not be explained by gestational age. © 2008 Foundation Acta Pædiatrica

    The LOFAR ling baseline snapshot calibrator survey

    Get PDF
    Aims:\ud An efficient means of locating calibrator sources for international LOw Frequency ARray (LOFAR) is developed and used to determine the average density of usable calibrator sources on the sky for subarcsecond observations at 140 MHz.\ud \ud Methods\ud We used the multi-beaming capability of LOFAR to conduct a fast and computationally inexpensive survey with the full international LOFAR array. Sources were preselected on the basis of 325 MHz arcminute-scale flux density using existing catalogues. By observing 30 different sources in each of the 12 sets of pointings per hour, we were able to inspect 630 sources in two hours to determine if they possess a sufficiently bright compact component to be usable as LOFAR delay calibrators.\ud \ud Results:\ud More than 40% of the observed sources are detected on multiple baselines between international stations and 86 are classified as satisfactory calibrators. We show that a flat low-frequency spectrum (from 74 to 325 MHz) is the best predictor of compactness at 140 MHz. We extrapolate from our sample to show that the sky density of calibrators that are sufficiently bright to calibrate dispersive and non-dispersive delays for the international LOFAR using existing methods is 1.0 per square degree.\ud \ud Conclusions:\ud The observed density of satisfactory delay calibrator sources means that observations with international LOFAR should be possible at virtually any point in the sky provided that a fast and efficient search, using the methodology described here, is conducted prior to the observation to identify the best calibrator

    Shock location and CME 3D reconstruction of a solar type II radio burst with LOFAR

    Get PDF
    Context. Type II radio bursts are evidence of shocks in the solar atmosphere and inner heliosphere that emit radio waves ranging from sub-meter to kilometer lengths. These shocks may be associated with coronal mass ejections (CMEs) and reach speeds higher than the local magnetosonic speed. Radio imaging of decameter wavelengths (20–90 MHz) is now possible with the Low Frequency Array (LOFAR), opening a new radio window in which to study coronal shocks that leave the inner solar corona and enter the interplanetary medium and to understand their association with CMEs. Aims. To this end, we study a coronal shock associated with a CME and type II radio burst to determine the locations at which the radio emission is generated, and we investigate the origin of the band-splitting phenomenon. Methods. Thetype II shock source-positions and spectra were obtained using 91 simultaneous tied-array beams of LOFAR, and the CME was observed by the Large Angle and Spectrometric Coronagraph (LASCO) on board the Solar and Heliospheric Observatory (SOHO) and by the COR2A coronagraph of the SECCHI instruments on board the Solar Terrestrial Relation Observatory(STEREO). The 3D structure was inferred using triangulation of the coronographic observations. Coronal magnetic fields were obtained from a 3D magnetohydrodynamics (MHD) polytropic model using the photospheric fields measured by the Heliospheric Imager (HMI) on board the Solar Dynamic Observatory (SDO) as lower boundary. Results. The type II radio source of the coronal shock observed between 50 and 70 MHz was found to be located at the expanding flank of the CME, where the shock geometry is quasi-perpendicular with θBn ~ 70°. The type II radio burst showed first and second harmonic emission; the second harmonic source was cospatial with the first harmonic source to within the observational uncertainty. This suggests that radio wave propagation does not alter the apparent location of the harmonic source. The sources of the two split bands were also found to be cospatial within the observational uncertainty, in agreement with the interpretation that split bands are simultaneous radio emission from upstream and downstream of the shock front. The fast magnetosonic Mach number derived from this interpretation was found to lie in the range 1.3–1.5. The fast magnetosonic Mach numbers derived from modelling the CME and the coronal magnetic field around the type II source were found to lie in the range 1.4–1.6

    Cassiopeia A, Cygnus A, Taurus A, and Virgo A at ultra-low radio frequencies

    Get PDF
    Context. The four persistent radio sources in the northern sky with the highest flux density at metre wavelengths are Cassiopeia A, Cygnus A, Taurus A, and Virgo A; collectively they are called the A-team. Their flux densities at ultra-low frequencies (< 100 MHz) can reach several thousands of janskys, and they often contaminate observations of the low-frequency sky by interfering with image processing. Furthermore, these sources are foreground objects for all-sky observations hampering the study of faint signals, such as the cosmological 21 cm line from the epoch of reionisation. Aims. We aim to produce robust models for the surface brightness emission as a function of frequency for the A-team sources at ultra-low frequencies. These models are needed for the calibration and imaging of wide-area surveys of the sky with low-frequency interferometers. This requires obtaining images at an angular resolution better than 15\u2033 with a high dynamic range and good image fidelity. Methods. We observed the A-team with the Low Frequency Array (LOFAR) at frequencies between 30 MHz and 77 MHz using the Low Band Antenna system. We reduced the datasets and obtained an image for each A-team source. Results. The paper presents the best models to date for the sources Cassiopeia A, Cygnus A, Taurus A, and Virgo A between 30 MHz and 77 MHz. We were able to obtain the aimed resolution and dynamic range in all cases. Owing to its compactness and complexity, observations with the long baselines of the International LOFAR Telescope will be required to improve the source model for Cygnus A further

    LOFAR 144-MHz follow-up observations of GW170817

    Get PDF
    This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society, Volume 494, Issue 4, June 2020, Pages 5110–5117, ©: 2020 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.We present low-radio-frequency follow-up observations of AT 2017gfo, the electromagnetic counterpart of GW170817, which was the first binary neutron star merger to be detected by Advanced LIGO-Virgo. These data, with a central frequency of 144 MHz, were obtained with LOFAR, the Low-Frequency Array. The maximum elevation of the target is just 13.7 degrees when observed with LOFAR, making our observations particularly challenging to calibrate and significantly limiting the achievable sensitivity. On time-scales of 130-138 and 371-374 days after the merger event, we obtain 3σ\sigma upper limits for the afterglow component of 6.6 and 19.5 mJy beam1^{-1}, respectively. Using our best upper limit and previously published, contemporaneous higher-frequency radio data, we place a limit on any potential steepening of the radio spectrum between 610 and 144 MHz: the two-point spectral index α1446102.5\alpha^{610}_{144} \gtrsim -2.5. We also show that LOFAR can detect the afterglows of future binary neutron star merger events occurring at more favourable elevations.Peer reviewe
    corecore