360 research outputs found

    Analisa Pengaruh Advertising Awareness Terhadap Brand Equity Dengan Brand Awareness Dan Brand Image Sebagai Variabel Intervening Dengan Studi Kasus Iklan Indomie Goreng Kuah Di Youtube

    Full text link
    Penelitian ini bertujuan untuk menguji pengaruh Advertising Awareness dan Brand Equity terhadap brand image dan brand awareness sebagai variable intervening. Penelitian ini menggunakan pendekatan kuantitatif dengan menggunakan metode non probability sampling dengan software PLS. Jumlah sampel yang digunakan dalam penelitian ini sebanyak 100 sampel. Hasil penelitian ini menunjukan bahwa Advertising Awareness berpengaruh positif signifikan terhadap Brand Awareness (1), Brand Awareness berpengaruh positif signifikan terhadap Brand Image (2), Advertising Awareness Indomie Goreng Kuah berpengaruh positif siginifikan terhadap Brand Image (3) Advertising Awareness Indomie Goreng Kuah berpengaruh positif siginifikan terhadap Brand Equity (4), Brand Awareness berpengaruh positif signifikan terhadap Brand Equity (5) Brand Image berpengaruh positifi siginifikan terhadap Brand Equity (6

    Surface and bulk polaritons in a linear magnetoelectric multiferroic with canted spins: Transverse Electric polarisation

    Full text link
    Some magnetoelectric multiferroics have a canted spin structure that can be described by a Dzyaloshinkii-Moriya coupling. We calculate properties and features expected for surface and bulk magnon polaritons in such media with a linear magnetoelectric interaction for the case of transverse electric polarisation. The dielectric polarisation and magnetisation of weak ferromagnetism are constrained to lie in the plane parallel to the surface. We examine a geometry with the polarisation oriented in the film plane and present numerical results for the transverse electric polarisation. Particular attention is given to non-reciprocal surface modes, which exist in frequency between two bulk bands, and show how these modes can be modified by external magnetic field. Results for attenuated total reflection are presented, and discussed in relation to nonreciprocity. Example results are calculated for the canted antiferromagnet BaMnF4.Comment: 14 pages, 6 figure

    Time-reversed symmetry and covariant Lyapunov vectors for simple particle models in and out of thermal equilibrium

    Full text link
    Recently, a new algorithm for the computation of covariant Lyapunov vectors and of corresponding local Lyapunov exponents has become available. Here we study the properties of these still unfamiliar quantities for a number of simple models, including an harmonic oscillator coupled to a thermal gradient with a two-stage thermostat, which leaves the system ergodic and fully time reversible. We explicitly demonstrate how time-reversal invariance affects the perturbation vectors in tangent space and the associated local Lyapunov exponents. We also find that the local covariant exponents vary discontinuously along directions transverse to the phase flow.Comment: 13 pages, 11 figures submitted to Physical Review E, 201

    Valley filter and valley valve in graphene

    Full text link
    It is known that the lowest propagating mode in a narrow ballistic ribbon of graphene may lack the twofold valley degeneracy of higher modes. Depending on the crystallographic orientation of the ribbon axis, the lowest mode mixes both valleys or lies predominantly in a single valley (chosen by the direction of propagation). We show, using a tight-binding model calculation, that a nonequilibrium valley polarization can be realized in a sheet of graphene, upon injection of current through a ballistic point contact with zigzag edges. The polarity can be inverted by local application of a gate voltage to the point contact region. Two valley filters in series may function as an electrostatically controlled ``valley valve'', representing a zero-magnetic-field counterpart to the familiar spin valve.Comment: RevTeX, 4 pages, 5 figure

    Radio continuum and near-infrared study of the MGRO J2019+37 region

    Get PDF
    (abridged) MGRO J2019+37 is an unidentified extended source of VHE gamma-rays originally reported by the Milagro Collaboration as the brightest TeV source in the Cygnus region. Its extended emission could be powered by either a single or several sources. The GeV pulsar AGL J2020.5+3653, discovered by AGILE and associated with PSR J2021+3651, could contribute to the emission from MGRO J2019+37, although extrapolation of the GeV spectrum does not explain the detected multi-TeV flux. Our aim is to identify radio and NIR sources in the field of the extended TeV source MGRO J2019+37, and study potential counterparts that could contribute to its emission. We surveyed a region of about 6 square degrees with the Giant Metrewave Radio Telescope (GMRT) at the frequency 610 MHz. We also observed the central square degree of this survey in the NIR Ks-band using the 3.5 m telescope in Calar Alto. Archival X-ray observations of some specific fields are included. VLBI observations of an interesting radio source were performed. We explored possible scenarios to produce the multi-TeV emission from MGRO J2019+37 and studied which of the sources could be the main particle accelerator. We present a catalogue of 362 radio sources detected with the GMRT in the field of MGRO J2019+37, and the results of a cross-correlation of this catalog with one obtained at NIR wavelengths, as well as with available X-ray observations of the region. Some peculiar sources inside the ~1 degree uncertainty region of the TeV emission from MGRO J2019+37 are discussed in detail, including the pulsar PSR J2021+3651 and its pulsar wind nebula PWN G75.2+0.1, two new radio-jet sources, the HII region Sh 2-104 containing two star clusters, and the radio source NVSS J202032+363158.Comment: 10 pages, 6 figures, 2 tables, accepted for publication in Astronomy and Astrophysic

    Radio continuum and near-infrared study of the MGRO J2019+37 region

    Get PDF
    (abridged) MGRO J2019+37 is an unidentified extended source of VHE gamma-rays originally reported by the Milagro Collaboration as the brightest TeV source in the Cygnus region. Its extended emission could be powered by either a single or several sources. The GeV pulsar AGL J2020.5+3653, discovered by AGILE and associated with PSR J2021+3651, could contribute to the emission from MGRO J2019+37, although extrapolation of the GeV spectrum does not explain the detected multi-TeV flux. Our aim is to identify radio and NIR sources in the field of the extended TeV source MGRO J2019+37, and study potential counterparts that could contribute to its emission. We surveyed a region of about 6 square degrees with the Giant Metrewave Radio Telescope (GMRT) at the frequency 610 MHz. We also observed the central square degree of this survey in the NIR Ks-band using the 3.5 m telescope in Calar Alto. Archival X-ray observations of some specific fields are included. VLBI observations of an interesting radio source were performed. We explored possible scenarios to produce the multi-TeV emission from MGRO J2019+37 and studied which of the sources could be the main particle accelerator. We present a catalogue of 362 radio sources detected with the GMRT in the field of MGRO J2019+37, and the results of a cross-correlation of this catalog with one obtained at NIR wavelengths, as well as with available X-ray observations of the region. Some peculiar sources inside the ~1 degree uncertainty region of the TeV emission from MGRO J2019+37 are discussed in detail, including the pulsar PSR J2021+3651 and its pulsar wind nebula PWN G75.2+0.1, two new radio-jet sources, the HII region Sh 2-104 containing two star clusters, and the radio source NVSS J202032+363158.Comment: 10 pages, 6 figures, 2 tables, accepted for publication in Astronomy and Astrophysic

    Collision of two identical hypersonic stellar winds in binary systems

    Get PDF
    We investigate the hydrodynamics of two identical hypersonic stellar winds in a binary system. The interaction of these winds manifests itself in the form of two shocks and a contact surface between them. We neglect the binary rotation and assume that the gas flow ahead of the shocks is spherically symmetrical. In this case the contact surface that separates the gas emanated from the different stars coincides with the midplane of the binary components. In the shock the gas is heated and flows away nearly along the contact surface. We find the shock shape and the hot gas parameters in the shock layer between the shock and the contact surface.Comment: 19 pages, 3 figures, accepted for publication in Ap

    Globules and pillars seen in the [CII] 158 micron line with SOFIA

    Get PDF
    Molecular globules and pillars are spectacular features, found only in the interface region between a molecular cloud and an HII-region. Impacting Far-ultraviolet (FUV) radiation creates photon dominated regions (PDRs) on their surfaces that can be traced by typical cooling lines. With the GREAT receiver onboard SOFIA we mapped and spectrally resolved the [CII] 158 micron atomic fine-structure line and the highly excited 12CO J=11-10 molecular line from three objects in Cygnus X (a pillar, a globule, and a strong IRAS source). We focus here on the globule and compare our data with existing Spitzer data and recent Herschel Open-Time PACS data. Extended [CII] emission and more compact CO-emission was found in the globule. We ascribe this emission mainly to an internal PDR, created by a possibly embedded star-cluster with at least one early B-star. However, external PDR emission caused by the excitation by the Cyg OB2 association cannot be fully excluded. The velocity-resolved [CII] emission traces the emission of PDR surfaces, possible rotation of the globule, and high-velocity outflowing gas. The globule shows a velocity shift of ~2 km/s with respect to the expanding HII-region, which can be understood as the residual turbulence of the molecular cloud from which the globule arose. This scenario is compatible with recent numerical simulations that emphazise the effect of turbulence. It is remarkable that an isolated globule shows these strong dynamical features traced by the [CII]-line, but it demands more observational studies to verify if there is indeed an embedded cluster of B-stars.Comment: Letter accepted by A&A (SOFIA special issue

    The "cosmic Seagull":A Highly Magnified Disk-like Galaxy at z ≃ 2.8 behind the Bullet Cluster

    Get PDF
    We present Atacama Large Millimeter/submillimeter Array measurements of the `Cosmic Seagull', a strongly magnified galaxy at z=2.7779 behind the Bullet Cluster. We report CO(3-2) and continuum 344~μ\mum (rest-frame) data at one of the highest differential magnifications ever recorded at submillimeter wavelengths (μ\mu up to ~50), facilitating a characterization of the kinematics of a rotational curve in great detail (at ~620 pc resolution in the source plane). We find no evidence for a decreasing rotation curve, from which we derive a dynamical mass of (6.3±0.7)×1010M6.3\pm0.7)\times10^{10} M_{\odot} within r=2.6±0.1r = 2.6\pm0.1 kpc. The discovery of a third, unpredicted, image provides key information for a future improvement of the lensing modeling of the Bullet Cluster and allows a measure of the stellar mass, 1.60.86+1.9×1010M1.6^{+1.9}_{-0.86}\times10^{10} M_{\odot}, unaffected by strong differential magnification. The baryonic mass is is expected to be dominated by the molecular gas content (fgas80±20f_{gas} \leq 80 \pm 20 \%) based on an MH2M_{H_2} mass estimated from the difference between dynamical and stellar masses. The star formation rate is estimated via the spectral energy distribution (SFR=190±10M/yrSFR = 190 \pm 10 M_{\odot}/yr), implying a molecular gas depletion time of 0.25±0.080.25\pm0.08 Gyr.Comment: 14 pages LaTeX using ApJLetter macros, author final version accepted, 4 figure

    Orion-KL Observations with the Extended Tuning Range of the New SEPIA660 APEX Facility Instrument

    Get PDF
    During Science Verification of the new SEPIA660 facility receiver at APEX, we carried out a shallow line survey of the archetypal Kleinmann- Low Nebula in the Orion star forming region (Orion-KL). These observations cover the tuning range towards the band edges, which has recently been extended beyond ALMA Band 9 specifications. At these frequencies, atmospheric transmission is very low but still sufficient to detect bright lines in Orion-KL. We present the collected spectra and compare with surveys from the literature, demonstrating the capabilities of the instrument
    corecore