94 research outputs found

    Therapeutic options to prevent recurrence of an aggressive aneurysmatic bone cyst of the cervical spine of a 16 year old boy - a case report

    Get PDF
    The aneurysmatic bone cyst (ABC) is a benign primary bone tumour. If located in the cervical spine, its expansive growth and destructive behaviour may lead to instability and serious neurological impairment. We report a case of a 16-year-old boy with an aggressive ABC in the 7th cervical vertebra. Computertomographic and magnetic resonance imaging revealed the envelopment of the left 7th and 8th spinal nerve along with the anterior displacement of the left vertebral artery. The interdisciplinary surgical strategy consisted of a partially incomplete cyst resection, subtotal spondylectomy with posterior screw-and-rod fixation from C6-Th1, iliac crest bone grafting and anterior plating from C6-Th1. With regard to the high rate of recurrence after incomplete resection published in the recent literature, the patient was postoperatively treated by megavoltage radiotherapy with a total dose of 30Gy (daily dose of 1.8 Gy for 3 weeks). The clinical and radiographic follow-up showed complete recovery of all neurologic impairments and no signs of tumour recurrence at 3, 6 and 12 months after surgery. This case highlights diverse treatment regimens and shall outline the challenge and the problems of the interdisciplinary decision-making in adolescents presenting with ABC in high-demanding anatomical regions

    The p53 Family of Transcription Factors Represses the Alpha- fetoprotein Gene Expression in Hepatocellular Carcinoma

    Get PDF
    Background: p53 deletion and mutation as well as upregulation of alpha-fetoprotein (AFP) are hallmarks of hepatocarcinogenesis. p63 and p73 belong to the family of p53-related transcription factors expressing a variety of isoforms. The expression of dominant negative (ΔN) p73 is related to the reduced survival of patients with hepatocellular carcinoma (HCC). In this study, we characterized the interaction between p53 family-dependent signaling pathways and the regulation of AFP at the gene and protein levels as essential determinants of therapeutic response and prognosis in HCC. Methods: Putative p53-, p63- and p73-binding sites within the AFP gene were identified in silico. Hep3B cells were transfected with plasmids encoding for p53, p63 and p73 to analyze the interplay of the p53 family with AFP. AFP transcription was determined by RT-qPCR. Protein levels of AFP, p53, p63 and p73 were analyzed by Western blot. Results: Underlining the importance of the crosstalk between the p53 family-dependent pathways and AFP regulation we identified eight novel putative binding sites for the members of the p53 family within the introns 1, 2, 3, 4, 7, 8, 11, and 12 of the AFP gene. Accordingly, full-length isoforms of p53, p63 and p73 efficiently downregulated AFP both on mRNA and protein level. Thus, the p53 family members were identified to be major regulators of AFP repression. Of note, p63 was characterized as a novel and p73 as the most efficient repressor of AFP. Conclusion: p53 mutation and upregulation of AFP are essential oncogenic events in the development of HCC. Here we show that AFP gene regulation occurs via a combined action of the p53 family members p53, p63 and p73. All three tumor suppressors reduce AFP gene and protein expression. Thus, our findings reveal a novel interaction of p53 family-dependent signaling pathways and AFP regulation at the gene and protein levels in HCC

    Mouse model for inherited renal fibrosis associated with endoplasmic reticulum stress

    Get PDF
    Renal fibrosis is a common feature of renal failure resulting from multiple etiologies, including diabetic nephropathy, hypertension and inherited renal disorders. However, the mechanisms of renal fibrosis are incompletely understood and we therefore explored these by establishing a mouse model for a renal tubular disorder, referred to as autosomal dominant tubulointerstitial kidney disease (ADTKD) due to missense uromodulin (UMOD) mutations (ADTKD-UMOD). ADTKD-UMOD, which is associated with retention of mutant uromodulin in the endoplasmic reticulum (ER) of renal thick ascending limb cells, is characterized by hyperuricemia, interstitial fibrosis, inflammation and renal failure, and we used targeted homologous recombination to generate a knock-in mouse model with an ADTKD-causing missense cysteine to arginine uromodulin mutation (C125R). Heterozygous and homozygous mutant mice developed reduced uric acid excretion, renal fibrosis, immune cell infiltration and progressive renal failure, with decreased maturation and excretion of uromodulin, due to its retention in the ER. The ER stress marker 78 kDa glucose-regulated protein (GRP78) was elevated in cells expressing mutant uromodulin in heterozygous and homozygous mutant mice, and this was accompanied, both in vivo and ex vivo, by upregulation of two unfolded protein response pathways in primary thick ascending limb cells from homozygous mutant mice. However, this did not lead to an increase in apoptosis in vivo Thus, we have developed a novel mouse model for renal fibrosis, which will be a valuable resource to decipher the mechanisms linking uromodulin mutations with ER stress and renal fibrosis

    Extensive Translatome Remodeling during ER Stress Response in Mammalian Cells

    Get PDF
    In this work we have described the translatome of two mammalian cell lines, NIH3T3 and Jurkat, by scoring the relative polysome association of ∼10,000 mRNA under normal and ER stress conditions. We have found that translation efficiencies of mRNA correlated poorly with transcript abundance, although a general tendency was observed so that the highest translation efficiencies were found in abundant mRNA. Despite the differences found between mouse (NIH3T3) and human (Jurkat) cells, both cell types share a common translatome composed by ∼800–900 mRNA that encode proteins involved in basic cellular functions. Upon stress, an extensive remodeling in translatomes was observed so that translation of ∼50% of mRNA was inhibited in both cell types, this effect being more dramatic for those mRNA that accounted for most of the cell translation. Interestingly, we found two subsets comprising 1000–1500 mRNA whose translation resisted or was induced by stress. Translation arrest resistant class includes many mRNA encoding aminoacyl tRNA synthetases, ATPases and enzymes involved in DNA replication and stress response such as BiP. This class of mRNA is characterized by high translation rates in both control and stress conditions. Translation inducible class includes mRNA whose translation was relieved after stress, showing a high enrichment in early response transcription factors of bZIP and zinc finger C2H2 classes. Unlike yeast, a general coordination between changes in translation and transcription upon stress (potentiation) was not observed in mammalian cells. Among the different features of mRNA analyzed, we found a relevant association of translation efficiency with the presence of upstream ATG in the 5′UTR and with the length of coding sequence of mRNA, and a looser association with other parameters such as the length and the G+C content of 5′UTR. A model for translatome remodeling during the acute phase of stress response in mammalian cells is proposed

    Mechanisms of HIV-associated lymphocyte apoptosis: 2010

    Get PDF
    The inevitable decline of CD4T cells in untreated infection with the Human immunodeficiency virus (HIV) is due in large part to apoptosis, one type of programmed cell death. There is accumulating evidence that the accelerated apoptosis of CD4T cells in HIV infection is multifactorial, with direct viral cytotoxicity, signaling events triggered by viral proteins and aberrant immune activation adding to normal immune defense mechanisms to contribute to this phenomenon. Current antiviral treatment strategies generally lead to reduced apoptosis, but this approach may come at the cost of preserving latent viral reservoirs. It is the purpose of this review to provide an update on the current understanding of the role and mechanisms of accelerated apoptosis of T cells in the immunopathogenesis of HIV infection, and to highlight potential ways in which this seemingly deleterious process could be harnessed to not just control, but treat HIV infection
    corecore