463 research outputs found

    \u3ci\u3efrom\u3c/i\u3e The Book of Books

    Get PDF

    SOLiD sequencing of four Vibrio vulnificus genomes enables comparative genomic analysis and identification of candidate clade-specific virulence genes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Vibrio vulnificus </it>is the leading cause of reported death from consumption of seafood in the United States. Despite several decades of research on molecular pathogenesis, much remains to be learned about the mechanisms of virulence of this opportunistic bacterial pathogen. The two complete and annotated genomic DNA sequences of <it>V. vulnificus </it>belong to strains of clade 2, which is the predominant clade among clinical strains. Clade 2 strains generally possess higher virulence potential in animal models of disease compared with clade 1, which predominates among environmental strains. SOLiD sequencing of four <it>V. vulnificus </it>strains representing different clades (1 and 2) and biotypes (1 and 2) was used for comparative genomic analysis.</p> <p>Results</p> <p>Greater than 4,100,000 bases were sequenced of each strain, yielding approximately 100-fold coverage for each of the four genomes. Although the read lengths of SOLiD genomic sequencing were only 35 nt, we were able to make significant conclusions about the unique and shared sequences among the genomes, including identification of single nucleotide polymorphisms. Comparative analysis of the newly sequenced genomes to the existing reference genomes enabled the identification of 3,459 core <it>V. vulnificus </it>genes shared among all six strains and 80 clade 2-specific genes. We identified 523,161 SNPs among the six genomes.</p> <p>Conclusions</p> <p>We were able to glean much information about the genomic content of each strain using next generation sequencing. Flp pili, GGDEF proteins, and genomic island XII were identified as possible virulence factors because of their presence in virulent sequenced strains. Genomic comparisons also point toward the involvement of sialic acid catabolism in pathogenesis.</p

    Serum antibodies to Vibrio vulnificus biotype 3 lipopolysaccharide and susceptibility to disease caused by the homologous V. vulnificus biotype

    Get PDF
    In 1996 an outbreak of severe soft tissue infections caused by Vibrio vulnificus unexpectedly erupted in fish consumers in Israel with relatively little morbidity in fish farmers. To test the hypothesis that recurrent exposure of fishermen to the virulent strain may have provided protection against severe or symptomatic disease, we investigated the association between the immune response to V. vulnificus biotype 3 lipopolysaccharide (BT3 LPS) and disease susceptibility in fish farmers and fish consumers. Serum samples were tested for IgA and IgG of anti-BT3 LPS in fishermen and fish consumers who suffered from V. vulnificus BT3 infections and their matched controls. Pre-existing levels of IgG (IgG0) of anti-BT3 LPS were significantly lower in diseased fishermen who developed disease associated with the homologous biotype, compared to controls. In multivariate analysis, levels of IgG0 anti-BT3 LPS remained the only variable significantly associated with disease occurrence in fishermen. Higher levels of pre-existing IgG anti-BT 3 LPS antibodies may be associated with protection against severe or symptomatic disease with the homologous biotype in fishermen but not in subjects from the general public

    Towards a Systems Approach in the Genetic Analysis of Archaea: Accelerating Mutant Construction and Phenotypic Analysis in Haloferax volcanii

    Get PDF
    With the availability of a genome sequence and increasingly sophisticated genetic tools, Haloferax volcanii is becoming a model for both Archaea and halophiles. In order for H. volcanii to reach a status equivalent to Escherichia coli, Bacillus subtilis, or Saccharomyces cerevisiae, a gene knockout collection needs to be constructed in order to identify the archaeal essential gene set and enable systematic phenotype screens. A streamlined gene-deletion protocol adapted for potential automation was implemented and used to generate 22 H. volcanii deletion strains and identify several potentially essential genes. These gene deletion mutants, generated in this and previous studies, were then analyzed in a high-throughput fashion to measure growth rates in different media and temperature conditions. We conclude that these high-throughput methods are suitable for a rapid investigation of an H. volcanii mutant library and suggest that they should form the basis of a larger genome-wide experiment

    The Salmonella effector SpvD is a cysteine hydrolase with a serovar-specific polymorphism influencing catalytic activity, suppression of immune responses, and bacterial virulence

    Get PDF
    Many bacterial pathogens secrete virulence (effector) proteins that interfere with immune signaling in their host. SpvD is a Salmonella enterica effector protein that we previously demonstrated to negatively regulate the NF-κB signaling pathway and promote virulence of S. enterica serovar Typhimurium in mice. To shed light on the mechanistic basis for these observations, we determined the crystal structure of SpvD and show that it adopts a papain-like fold with a characteristic cysteine-histidine-aspartate catalytic triad comprising Cys-73, His-162, and Asp-182. SpvD possessed an in vitro deconjugative activity on aminoluciferin-linked peptide and protein substrates in vitro. A C73A mutation abolished SpvD activity, demonstrating that an intact catalytic triad is required for its function. Taken together, these results strongly suggest that SpvD is a cysteine protease. The amino acid sequence of SpvD is highly conserved across different S. enterica serovars, but residue 161, located close to the catalytic triad, is variable, with serovar Typhimurium SpvD having an arginine and serovar Enteritidis a glycine at this position. This variation affected hydrolytic activity of the enzyme on artificial substrates and can be explained by substrate accessibility to the active site. Interestingly, the SpvDG161 variant more potently inhibited NF-κB-mediated immune responses in cells in vitro and increased virulence of serovar Typhimurium in mice. In summary, our results explain the biochemical basis for the effect of virulence protein SpvD and demonstrate that a single amino acid polymorphism can affect the overall virulence of a bacterial pathogen in its host

    Capsular polysaccharide production and serum survival of Vibrio vulnificus are dependent on antitermination control by RfaH

    Get PDF
    © 2016 Federation of European Biochemical Societies The human pathogen Vibrio vulnificus undergoes phase variation among colonial morphotypes, including a virulent opaque form which produces capsular polysaccharide (CPS) and a translucent phenotype that produces little or no CPS and is attenuated. Here, we found that a V. vulnificus mutant defective for RfaH antitermination control showed a diminished capacity to undergo phase variation and displayed significantly reduced distal gene expression within the Group I CPS operon. Moreover, the rfaH mutant produced negligible CPS and was highly sensitive to killing by normal human serum, results which indicate that RfaH is likely essential for virulence in this bacterium
    corecore