1,060 research outputs found

    Massive molecular outflows at high spatial resolution

    Full text link
    We present high-spatial resolution Plateau de Bure Interferometer CO(2-1) and SiO(2-1) observations of one intermediate-mass and one high-mass star-forming region. The intermediate-mass region IRAS20293+3952 exhibits four molecular outflows, one being as collimated as the highly collimated jet-like outflows observed in low-mass star formation sources. Furthermore, comparing the data with additional infrared H2 and cm observations we see indications that the nearby ultracompact HII region triggers a shock wave interacting with the outflow. The high-mass region IRAS19217+1651 exhibits a bipolar outflow as well and the region is dominated by the central driving source. Adding two more sources from the literature, we compare position-velocity diagrams of the intermediate- to high-mass sources with previous studies in the low-mass regime. We find similar kinematic signatures, some sources can be explained by jet-driven outflows whereas other are better constrained by wind-driven models. The data also allow to estimate accretion rates varying from a few times 10^{-5}Msun/yr for the intermediate-mass sources to a few times 10^{-4}Msun/yr for the high-mass source, consistent with models explaining star formation of all masses via accretion processes.Comment: 14 pages text, 4 tables, 8 figures, accepted for Ap

    IRAS 05358+3543: Multiple outflows at the earliest stages of massive star formation

    Get PDF
    We present a high-angular-resolution molecular line and millimeter continuum study of the massive star formation site IRAS 05358+3543. The most remarkable feature is a highly collimated (collimation factor ~10) and massive (>10 M_sun) bipolar outflow of 1 pc length, which is part of a quadrupolar outflow system. The three observed molecular outflows forming the IRAS 05358+3543 outflow system resemble, in structure and collimation, those typical of low-mass star-forming regions. They might therefore, just like low-mass outflows, be explained by shock entrainment models of jets. We estimate a mass accretion rate of 10^{-4) M_sun/yr, sufficient to overcome the radiative pressure of the central object and to build up a massive star, lending further support to the hypothesis that massive star formation occurs similarly to low-mass star formation, only with higher accretion rates and energetics.Comment: 11 pages, 9 figures, accepted for Astronomy and Astrophysic

    A High Resolution Study of the Slowly Contracting, Starless Core L1544

    Get PDF
    We present interferometric observations of N2H+(1--0) in the starless, dense core L1544 in Taurus. Red-shifted self-absorption, indicative of inward motions, is found toward the center of an elongated core. The data are fit by a non-spherical model consisting of two isothermal, rotating, centrally condensed layers. Through a hybrid global-individual fit to the spectra, we map the variation of infall speed at scales ~1400AU and find values ~0.08 km/s around the core center. The inward motions are small in comparison to thermal, rotational, and gravitational speeds but are large enough to suggest that L1544 is very close to forming a star.Comment: 11 pages, 2 figures Accepted for publication in Astrophysical Journal Letter

    Multiple outflows in IRAS 19410+2336

    Full text link
    PdBI high-spatial resolution CO observations combined with near-infrared H2 data disentangle at least 7 (maybe even 9) molecular outflows in the massive star-forming region IRAS19410+2336. Position-velocity diagrams of the outflows reveal Hubble-like relationships similar to outflows driven by low-mass objects. Estimated accretion rates are of the order 10^-4 Msun/yr, sufficiently high to overcome the radiation pressure and form massive stars via disk-mediated accretion processes. The single-dish large-scale mm continuum cores fragment into several compact condensations at the higher spatial resolution of the PdBI which is expected due to the clustering in massive star formation. While single-dish data give a simplified picture of the source, sufficiently high spatial resolution resolves the structures into outflows resembling those of low-mass star-forming cores. We interpret this as further support for the hypothesis that massive stars do form via disk-accretion processes similar to low-mass stars.Comment: 10 pages, 4 figures, higher resolution version of images at http://cfa-www.harvard.edu/~hbeuther/. A&A, accepte

    Infall and Outflow around the HH 212 protostellar system

    Full text link
    HH 212 is a highly collimated jet discovered in H2 powered by a young Class 0 source, IRAS 05413-0104, in the L1630 cloud of Orion. We have mapped around it in 1.33 mm continuum, 12CO (J=2−1J=2-1), 13CO (J=2−1J=2-1), C18O (J=2−1J=2-1), and SO (JK=65−54J_K = 6_5-5_4) emission at ∌\sim \arcs{2.5} resolution with the Submillimeter Array. A dust core is seen in the continuum around the source. A flattened envelope is seen in C18O around the source in the equator perpendicular to the jet axis, with its inner part seen in 13CO. The structure and kinematics of the envelope can be roughly reproduced by a simple edge-on disk model with both infall and rotation. In this model, the density of the disk is assumed to have a power-law index of p=−1.5p=-1.5 or -2, as found in other low-mass envelopes. The envelope seems dynamically infalling toward the source with slow rotation because the kinematics is found to be roughly consistent with a free fall toward the source plus a rotation of a constant specific angular momentum. A 12CO outflow is seen surrounding the H2 jet, with a narrow waist around the source. Jetlike structures are also seen in 12CO near the source aligned with the H2 jet at high velocities. The morphological relationship between the H2 jet and the 12CO outflow, and the kinematics of the 12CO outflow along the jet axis are both consistent with those seen in a jet-driven bow shock model. SO emission is seen around the source and the H2 knotty shocks in the south, tracing shocked emission around them.Comment: 17 pages, 11 figures, Accepted by the Ap

    The ortho-to-para ratio of ammonia in the L1157 outflow

    Get PDF
    We have measured the ortho-to-para ratio of ammonia in the blueshifted gas of the L1157 outflow by observing the six metastable inversion lines from (J, K) = (1, 1) to (6, 6). The highly excited (5, 5) and (6, 6) lines were first detected in the low-mass star forming regions. The rotational temperature derived from the ratio of four transition lines from (3, 3) to (6, 6) is 130-140 K, suggesting that the blueshifted gas is heated by a factor of ~10 as compared to the quiescent gas. The ortho-to-para ratio of the NH3 molecules in the blueshifted gas is estimated to be 1.3--1.7, which is higher than the statistical equilibrium value. This ratio provides us with evidence that the NH3 molecules have been evaporated from dust grains with the formation temperature between 18 and 25 K. It is most likely that the NH3 molecules on dust grains have been released into the gas phase through the passage of strong shock waves produced by the outflow. Such a scenario is supported by the fact that the ammonia abundance in the blueshifted gas is enhanced by a factor of ~5 with respect to the dense quiescent gas.Comment: 16 pages, including 3 PS figures. To appear in the ApJ (Letters). aastex macro

    Sub-arcsecond SMA observations of the prototype Class 0 object VLA1623 at 1.3 mm: A single protostar with a structured outflow cavity ?

    Full text link
    We present 1.3-mm subarcsecond SMA observations of the prototypical Class 0 protostar VLA1623. We report the detection of 1.3-mm continuum emission both from the central protostellar component VLA1623 and two additional sources, Knot-A and Knot-B, which have been already detected at longer wavelengths. Knot-A and Knot-B are both located along the western cavity wall opened by the protostellar outflow from VLA1623. Our SMA observations moreover show that these two continuum sources are associated with bright, high-velocity 12CO(2-1) emission, slightly shifted downstream of the outflow propagation direction with respect to the 1.3-mm continuum emission peaks. The alignment of Knot-A and Knot-B along the protostellar outflow cavity, the compactness of their 1.3-mm continuum emission and the properties of the associated CO emission suggest that these two sources trace outflow features due to shocks along the cavity wall, rather than protostellar objects. While it was considered as one of the best examples of a close protobinary system so far, the present analysis suggests that the prototypical Class 0, VLA1623, is single on the scales a>100 AU probed by our SMA observations. Moreover, we present here the second robust case of compact millimeter continuum emission produced by interactions between the protostellar jet and the envelope of a Class 0 protostar, which suggests a high occurrence of these outflow features during the embedded phase.Comment: Accepted for publication in Astronomy and Astrophysics. Low resolution figure

    The detection of Class I methanol masers towards regions of low-mass star formation

    Full text link
    Six young bipolar outflows in regions of low-to-intermediate-mass star formation were observed in the 7_0-6_1A+, 8_0-7_1A+, and 5_{-1}-4_0E methanol lines at 44, 95, and 84 GHz, respectively. Narrow features were detected towards NGC 1333IRAS4A, HH 25MMS, and L1157 B1. Flux densities of the detected lines are no higher than 11 Jy, which is much lower than the flux densities of strong maser lines in regions of high-mass star formation. Analysis shows that most likely the narrow features are masers.Comment: 12 pages, 6 figures, to be published in Astronomy Report

    Circumbinary Ring, Circumstellar disks and accretion in the binary system UY Aurigae

    Full text link
    Recent exo-planetary surveys reveal that planets can orbit and survive around binary stars. This suggests that some fraction of young binary systems which possess massive circumbinary disks (CB) may be in the midst of planet formation. However, there are very few CB disks detected. We revisit one of the known CB disks, the UY Aurigae system, and probe 13CO 2-1, C18O 2-1, SO 5(6)-4(5) and 12CO 3-2 line emission and the thermal dust continuum. Our new results confirm the existence of the CB disk. In addition, the circumstellar (CS) disks are clearly resolved in dust continuum at 1.4 mm. The spectral indices between the wavelengths of 0.85 mm and 6 cm are found to be surprisingly low, being 1.6 for both CS disks. The deprojected separation of the binary is 1.26" based on our 1.4 mm continuum data. This is 0.07" (10 AU) larger than in earlier studies. Combining the fact of the variation of UY Aur B in RR band, we propose that the CS disk of an undetected companion UY Aur Bb obscures UY Aur Ba. A very complex kinematical pattern inside the CB disk is observed due to a mixing of Keplerian rotation of the CB disk, the infall and outflow gas. The streaming gas accreting from the CB ring toward the CS disks and possible outflows are also identified and resolved. The SO emission is found to be at the bases of the streaming shocks. Our results suggest that the UY Aur system is undergoing an active accretion phase from the CB disk to the CS disks. The UY Aur B might also be a binary system, making the UY Aur a triple system.Comment: 14 pages, 11 figures; accepted for publication in Ap

    The W43-MM1 mini-starburst ridge, a test for star formation efficiency models

    Get PDF
    Context: Star formation efficiency (SFE) theories are currently based on statistical distributions of turbulent cloud structures and a simple model of star formation from cores. They remain poorly tested, especially at the highest densities. Aims: We investigate the effects of gas density on the SFE through measurements of the core formation efficiency (CFE). With a total mass of ∌2×104\sim2\times10^4 M⊙_\odot, the W43-MM1 ridge is one of the most convincing candidate precursor of starburst clusters and thus one of the best place to investigate star formation. Methods: We used high-angular resolution maps obtained at 3 mm and 1 mm within W43-MM1 with the IRAM Plateau de Bure Interferometer to reveal a cluster of 11 massive dense cores (MDCs), and, one of the most massive protostellar cores known. An Herschel column density image provided the mass distribution of the cloud gas. We then measured the 'instantaneous' CFE and estimated the SFE and the star formation rate (SFR) within subregions of the W43-MM1 ridge. Results: The high SFE found in the ridge (∌\sim6% enclosed in ∌\sim8 pc3^3) confirms its ability to form a starburst cluster. There is however a clear lack of dense cores in the northern part of the ridge, which may be currently assembling. The CFE and the SFE are observed to increase with volume gas density while the SFR steeply decreases with the virial parameter, αvir\alpha_{vir}. Statistical models of the SFR may well describe the outskirts of the W43-MM1 ridge but struggle to reproduce its inner part, which corresponds to measurements at low αvir\alpha_{vir}. It may be that ridges do not follow the log-normal density distribution, Larson relations, and stationary conditions forced in the statistical SFR models.Comment: 13 pages, 7 figures. Accepted by A&
    • 

    corecore