49 research outputs found

    Opening the Treasure Chest in Carina

    Full text link
    We have mapped the G287.84-0.82 cometary globule (with the Treasure Chest cluster embedded in it) in the South Pillars region of Carina (i) in [CII], 63micron [OI], and CO(11-10) using upGREAT on SOFIA and (ii) in J=2-1 transitions of CO, 13CO, C18O and J=3-2 transitions of H2CO using the APEX telescope in Chile. We probe the morphology, kinematics, and physical conditions of the molecular gas and the photon dominated regions (PDRs) in G287.84-0.82. The [CII] and [OI] emission suggest that the overall structure of the pillar (with red-shifted photo evaporating tails) is consistent with the effect of FUV radiation and winds from eta-Car and O stars in Trumpler 16. The gas in the head of the pillar is strongly influenced by the embedded cluster, whose brightest member is an O9.5V star, CPD-59 2661. The emission of the [CII] and [OI] lines peak at a position close to the embedded star, while all other tracers peak at another position lying to the north-east consistent with gas being compressed by the expanding PDR created by the embedded cluster. The molecular gas inside the globule is probed with the J=2-1 transitions of CO and isotopologues as well as H2CO, and analyzed using a non-LTE model (escape-probability approach), while we use PDR models to derive the physical conditions of the PDR. We identify at least two PDR gas components; the diffuse part (~10^4 cm^-3) is traced by [CII], while the dense (n~ 2-8x10^5 cm^-3) part is traced by [CII], [OI], CO(11-10). Using the F=2-1 transition of [13CII] detected at 50 positions in the region, we derive optical depths (0.9-5), excitation temperatures of [CII] (80-255 K), and N(C+) of 0.3-1x10^19 cm^-2. The total mass of the globule is ~1000 Msun, about half of which is traced by [CII]. The dense PDR gas has a thermal pressure of 10^7-10^8 K cm^-3, which is similar to the values observed in other regions.Comment: Accepted for publication in Astronomy and Astrophysics (abstract slightly abridged

    Aperture synthesis observations of the molecular ring in the galactic center

    Get PDF
    Reported are 88 GHz aperture synthesis observations of HCN J=1 yields 0 emission and absorption in the central 5 pc of the Galaxy. The data, taken by the Hat Creek mm-interferometer at 5" to 10" spatial and 4 km/s spectral resolution, show a complete, clumpy ring of molecular gas surrounding the ionized central 2 pc of the Galaxy. The ring is the inner edge of a larger disk extending to about 5 pc. Comparison with sub-mm line data suggests that the HCN 1-0 line is slightly optically thick and originates in subthermally populated gas. The clumpy line emission distribution reflects a combination of hydrogen volume and column density variations. The new data clearly show a close physical relation between the molecular and the ionized gas in the central cavity. The western arc appears to be the ionized inner surface of the molecular ring, and the northern arm and bar may be streamers of ionized gas falling from the ring toward the center. The dominant large scale velocity pattern of the majority of the molecular gas in the inner 5 pc is rotation. No overall radial motion of the ring greater than about 20 km/s is apparent. The rotation is perturbed in several ways; (1) there is a very large local velocity dispersion, (2) the ring shows changes in position angle and inclination (warps), (3) there is a bright, redshifted cloud which appears to be located in the western part of the ring but does not participate in the rotation. These characteristics and the high degree of clumpiness indicate a non-equilibrium configuration of short (less than or approx. 10 to the 4th power to 10 to the 5th power y) dynamical lifetime. The warping and tilting of the structure and the short dynamical lifetime make an accurate determination of equilibrium rotation velocity uncertain

    A novel ozone sensor for various environmental applications

    Get PDF
    A small, lightweight, and fast-response ozone sensor for various environmental applications is described. At a flow rate of 100 l/min(-1) the ozone sensor has a response time of significantly better than 0.1 s with a detection limit lower than 100 pptv. The ozone sensor was successfully tested in various environmental applications, i.e. in measuring directly the vertical ozone flux onto agricultural land utilizing the eddy correlation or covariance technique and in monitoring horizontal and vertical ozone profiles in the troposphere and stratosphere

    Carbon in different phases ([CII], [CI], and CO) in infrared dark clouds: Cloud formation signatures and carbon gas fractions

    Get PDF
    Context: How do molecular clouds form out of the atomic phase? And what are the relative fractions of carbon in the ionized, atomic and molecular phase? These are questions at the heart of cloud and star formation. Methods: Using multiple observatories from Herschel and SOFIA to APEX and the IRAM 30m telescope, we mapped the ionized, atomic and molecular carbon ([CII]@1900GHz, [CI]@492GHz and C18O(2-1)@220GHz) at high spatial resolution (12"-25") in four young massive infrared dark clouds (IRDCs). Results: The three carbon phases were successfully mapped in all four regions, only in one source the [CII] line remained a non-detection. Both the molecular and atomic phases trace the dense structures well, with [CI] also tracing material at lower column densities. [CII] exhibits diverse morphologies in our sample, from compact to diffuse structures probing the cloud environment. In at least two out of the four regions, we find kinematic signatures strongly indicating that the dense gas filaments have formed out of a dynamically active and turbulent atomic/molecular cloud, potentially from converging gas flows. The atomic-to-molecular carbon gas mass ratios are low between 7% and 12% with the lowest values found toward the most quiescent region. In the three regions where [CII] is detected, its mass is always higher by a factor of a few than that of the atomic carbon. The ionized carbon emission depends as well on the radiation field, however, we also find strong [CII] emission in a region without significant external sources, indicating that other processes, e.g., energetic gas flows can contribute to the [CII] excitation as well.Comment: 15 pages, 18 figures, accepted by Astronomy & Astrophysics, a higher resolution version can be found at http://www.mpia.de/homes/beuther/papers.htm

    Dynamical cloud formation traced by atomic and molecular gas

    Get PDF
    Context. Atomic and molecular cloud formation is a dynamical process. However, kinematic signatures of these processes are still observationally poorly constrained. Aims. We identify and characterize the cloud formation signatures in atomic and molecular gas. Methods. Targeting the cloud-scale environment of the prototypical infrared dark cloud G28.3, we employed spectral line imaging observations of the two atomic lines HI and [CI] as well as molecular lines observations in 13CO in the 1–0 and 3–2 transitions. The analysis comprises investigations of the kinematic properties of the different tracers, estimates of the mass flow rates, velocity structure functions, a histogram of oriented gradients (HOG) study, and comparisons to simulations. Results. The central infrared dark cloud (IRDC) is embedded in a more diffuse envelope of cold neutral medium traced by HI self-absorption and molecular gas. The spectral line data as well as the HOG and structure function analysis indicate a possible kinematic decoupling of the HI from the other gas compounds. Spectral analysis and position–velocity diagrams reveal two velocity components that converge at the position of the IRDC. Estimated mass flow rates appear rather constant from the cloud edge toward the center. The velocity structure function analysis is consistent with gas flows being dominated by the formation of hierarchical structures. Conclusions. The observations and analysis are consistent with a picture where the IRDC G28.3 is formed at the center of two converging gas flows. While the approximately constant mass flow rates are consistent with a self-similar, gravitationally driven collapse of the cloud, external compression (e.g., via spiral arm shocks or supernova explosions) cannot be excluded yet. Future investigations should aim at differentiating the origin of such converging gas flows

    HIFI spectroscopy of low-level water transitions in M82

    Get PDF
    We present observations of the rotational ortho-water ground transition, the two lowest para-water transitions, and the ground transition of ionised ortho-water in the archetypal starburst galaxy M82, performed with the HIFI instrument on the Herschel Space Observatory. These observations are the first detections of the para-H2O(111-000) (1113\,GHz) and ortho-H2O+(111-000) (1115\,GHz) lines in an extragalactic source. All three water lines show different spectral line profiles, underlining the need for high spectral resolution in interpreting line formation processes. Using the line shape of the para-H2O(111-000) and ortho-H2O+(111-000) absorption profile in conjunction with high spatial resolution CO observations, we show that the (ionised) water absorption arises from a ~2000 pc^2 region within the HIFI beam located about ~50 pc east of the dynamical centre of the galaxy. This region does not coincide with any of the known line emission peaks that have been identified in other molecular tracers, with the exception of HCO. Our data suggest that water and ionised water within this region have high (up to 75%) area-covering factors of the underlying continuum. This indicates that water is not associated with small, dense cores within the ISM of M82 but arises from a more widespread diffuse gas component.Comment: 5 pages, 4 figures. Accepted for publication in A&

    Ground-state ammonia and water in absorption towards Sgr B2

    Get PDF
    We have used the Odin submillimetre-wave satellite telescope to observe the ground state transitions of ortho-ammonia and ortho-water, including their 15N, 18O, and 17O isotopologues, towards Sgr B2. The extensive simultaneous velocity coverage of the observations, >500 km/s, ensures that we can probe the conditions of both the warm, dense gas of the molecular cloud Sgr B2 near the Galactic centre, and the more diffuse gas in the Galactic disk clouds along the line-of-sight. We present ground-state NH3 absorption in seven distinct velocity features along the line-of-sight towards Sgr B2. We find a nearly linear correlation between the column densities of NH3 and CS, and a square-root relation to N2H+. The ammonia abundance in these diffuse Galactic disk clouds is estimated to be about (0.5-1)e-8, similar to that observed for diffuse clouds in the outer Galaxy. On the basis of the detection of H218O absorption in the 3 kpc arm, and the absence of such a feature in the H217O spectrum, we conclude that the water abundance is around 1e-7, compared to ~1e-8 for NH3. The Sgr B2 molecular cloud itself is seen in absorption in NH3, 15NH3, H2O, H218O, and H217O, with emission superimposed on the absorption in the main isotopologues. The non-LTE excitation of NH3 in the environment of Sgr B2 can be explained without invoking an unusually hot (500 K) molecular layer. A hot layer is similarly not required to explain the line profiles of the 1_{1,0}-1_{0,1} transition from H2O and its isotopologues. The relatively weak 15NH3 absorption in the Sgr B2 molecular cloud indicates a high [14N/15N] isotopic ratio >600. The abundance ratio of H218O and H217O is found to be relatively low, 2.5--3. These results together indicate that the dominant nucleosynthesis process in the Galactic centre is CNO hydrogen burning.Comment: 10 pages, 5 figure
    corecore