13 research outputs found

    Slab Window Migration and Terrane Accretion Preserved by Low‐Temperature Thermochronology of a Magmatic Arc, Northern Antarctic Peninsula

    Get PDF
    Existing paleogeographic reconstructions indicate that the northern Antarctic Peninsula was central to several Mesozoic and Cenozoic tectonic events that have implications for ocean circulation and continental margin evolution. To evaluate the exhumational record of these processes, we collected new samples and measured fission track and (U‐Th)/He cooling ages of apatite and zircon from 13 Jurassic and Cretaceous granitoids in western Graham Land between the northern tip of the peninsula and the Antarctic Circle. Apatite He data reveal distinct ages and systematic age patterns north and south of Anvers Island, near the midpoint of the study area: To the south, apatite He ages range from 16 to 8 Ma and young northward, whereas to the north they range between 65 and 24 Ma (with one exception at 11 Ma) and young southward. Thermal histories inferred from the ages and closure temperatures of multiple thermochronometers in single samples indicate distinct histories for northern and southern Graham Land. Northern sites reveal a Late Cretaceous pulse of rapid cooling (\u3e7°C/Myr) followed by very slow cooling (∼1°C/Myr) to the Recent, whereas southern sites record either a pulse of rapid mid‐Miocene cooling (∼8°C/Myr) or steady and moderate cooling (∼3°C/Myr) from the Late Cretaceous to the Recent. We interpret the Late Cretaceous rapid cooling in the northern part of the study area as a possible manifestation of terrane accretion associated with the Palmer Land event. We interpret the systematic spatial trends in apatite He ages and contrasting thermal histories along the peninsula as recording progressive Late Cenozoic northward opening of a slab window south of Anvers Island. This is consistent with a time transgressive pulse of ∼2–3 km of rock uplift and exhumation in the upper plate following ridge‐trench collision, cessation of subduction, and opening of the slab window, presumably caused by increased asthenospheric upwelling beneath the overriding plate

    Removal of the Northern Paleo-Teton Range along the Yellowstone Hotspot Track

    Get PDF
    Classically held mechanisms for removing mountain topography (e.g., erosion and gravitational collapse) require 10-100 Myr or more to completely remove tectonically generated relief. Here, we propose that mountain ranges can be completely and rapidly (\u3c 2 Myr) removed by a migrating hotspot. In western North America, multiple mountain ranges, including the Teton Range, terminate at the boundary with the relatively low relief track of the Yellowstone hotspot. This abrupt transition leads to a previously untested hypothesis that preexisting mountainous topography along the track has been erased. We integrate thermochronologic data collected from the footwall of the Teton fault with flexural-kinematic modeling and length-displacement scaling to show that the paleo-Teton fault and associated Teton Range was much longer (min. original length 190-210 km) than the present topographic expression of the range front (~65 km) and extended across the modern-day Yellowstone hotspot track. These analyses also indicate that the majority of fault displacement (min. 11.4-12.6 km) and the associated footwall mountain range growth had accumulated prior to Yellowstone encroachment at ~2 Ma, leading us to interpret that eastward migration of the Yellowstone hotspot relative to stable North America led to removal of the paleo-Teton mountain topography via posteruptive collapse of the range following multiple supercaldera (VEI 8) eruptions from 2.0 Ma to 600 ka and/or an isostatic collapse response, similar to ranges north of the Snake River plain. While this extremely rapid removal of mountain ranges and adjoining basins is probably relatively infrequent in the geologic record, it has important implications for continental physiography and topography over very short time spans

    Long-term tectonothermal history of Laramide basement from zircon–He age-eU correlations

    No full text
    The long-term (>1 Ga) thermal histories of cratons are enigmatic, with geologic data providing only limited snapshots of their evolution. We use zircon (U-Th)/He (zircon He) thermochronology and age composition correlations to understand the Proterozoic-Phanerozoic thermal history of Archean Wyoming province rocks exposed in the northern Laramide ranges of western North America. Zircon He ages from the Wind River Range (54 dates) and Bighorn Mountains (32 dates) show negative correlations with effective uranium (eU), a proxy for radiation damage. Zircon dates from the Bighorns are between 960 Ma (low-eU) and 20 Ma (high-eU) whereas samples from the Wind Rivers are between 582 Ma (low-eU) and 33 Ma (high-eU). We applied forward modeling using the zircon radiation damage and annealing model ZrDAAM to understand this highly variable dataset. A long-term t-T path that is consistent with the available geologic constraints successfully reproduced age-eU correlations. The best fit to the Wind Rivers data involves two phases of rapid cooling at 1800-1600 Ma and 900-700 Ma followed by slower cooling until 525 Ma. During the Phanerozoic, these samples were heated to maximum temperatures between 160 and 125 degrees C prior to Laramide cooling to 50 degrees C between 60 and 40 Ma. Data from the Bighorn Mountains were successfully reproduced with a similar thermal history involving cooler Phanerozoic temperatures of similar to 115 degrees C and earlier Laramide cooling between 85 and 60 Ma. Our results indicate that age-eU correlations in zircon He datasets can be applied to extract long-term thermal histories that extend beyond the most recent cooling event. In addition, our results constrain the timing, magnitude and rates of cooling experienced by Archean Wyoming Province rocks between recognized deformation events, including the >1 Ga period represented by the regionally-extensive Great Unconformity.ExxonMobil [EAR-0910577]; ChevronTexaco Fellowships24 month embargo. First Available online 26 Aug 2016This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Effects of <i>o</i>‑Methoxy Groups on the Properties and Thermal Stability of Renewable High-Temperature Cyanate Ester Resins

    No full text
    Renewable phenols derived from biomass sources often contain methoxy groups that alter the properties of derivative polymers. To evaluate the impact of <i>o</i>-methoxy groups on the performance characteristics of cyanate ester resins, three bisphenols derived from the renewable phenol creosol were deoxygenated by conversion to ditriflates followed by palladium-catalyzed elimination and hydrolysis of the methoxy groups. The deoxygenated bisphenols were then converted to the following cyanate ester resins: bis­(4-cyanato-2-methylphenyl)­methane (<b>16</b>), 4,4′-(ethane-1,1′-diyl)­bis­(1-cyanato-3-methylbenzene) (<b>17</b>), and 4,4′-(propane-1,1′-diyl)­bis­(1-cyanato-3-methylbenzene) (<b>18</b>). The physical properties, cure chemistry, and thermal stability of these resins were evaluated and compared to those of cyanate esters derived from the oxygenated bisphenols. <b>16</b> and <b>18</b> had melting points 37 and >95 °C lower, respectively, than the oxygenated versions, while <b>17</b> had a melting point 14 °C higher. The <i>T</i><sub>g</sub>’s of thermosets generated from the deoxygenated resins ranged from 267 to 283 °C, up to 30 °C higher than the oxygenated resins, while the onset of thermal degradation was 50–80 °C higher. The deoxygenated resins also exhibited water uptakes up to 43% lower and wet <i>T</i><sub>g</sub>s up to 37 °C higher than the oxygenated resins. TGA-FTIR of thermoset networks derived from <b>16</b>–<b>18</b> revealed a different decomposition mechanism compared to the oxygenated resins. Instead of a low-temperature pathway that resulted in the evolution of phenolic compounds, <b>16</b>–<b>18</b> had significantly higher char yields and decomposed via evolution of small molecules including isocyanic acid, CH<sub>4</sub>, CO<sub>2</sub>, and NH<sub>3</sub>

    Zircon, titanite, and apatite (U-Th)/He ages and age-eU correlations from the Fennoscandian Shield, southern Sweden

    No full text
    Craton cores far from plate boundaries have traditionally been viewed as stable features that experience minimal vertical motion over 100-1000Ma time scales. Here we show that the Fennoscandian Shield in southeastern Sweden experienced several episodes of burial and exhumation from similar to 1800Ma to the present. Apatite, titanite, and zircon (U-Th)/He ages from surface samples and drill cores constrain the long-term, low-temperature history of the Laxemar region. Single grain titanite and zircon (U-Th)/He ages are negatively correlated (104-838Ma for zircon and 160-945Ma for titanite) with effective uranium (eU=U+0.235xTh), a measurement proportional to radiation damage. Apatite ages are 102-258Ma and are positively correlated with eU. These correlations are interpreted with damage-diffusivity models, and the modeled zircon He age-eU correlations constrain multiple episodes of heating and cooling from 1800Ma to the present, which we interpret in the context of foreland basin systems related to the Neoproterozoic Sveconorwegian and Paleozoic Caledonian orogens. Inverse time-temperature models constrain an average burial temperature of similar to 217 degrees C during the Sveconorwegian, achieved between 944Ma and 851Ma, and similar to 154 degrees C during the Caledonian, achieved between 366Ma and 224Ma. Subsequent cooling to near-surface temperatures in both cases could be related to long-term exhumation caused by either postorogenic collapse or mantle dynamics related to the final assembly of Rodinia and Pangaea. Our titanite He age-eU correlations cannot currently be interpreted in the same fashion; however, this study represents one of the first examples of a damage-diffusivity relationship in this system, which deserves further research attention.6 month embargo; published online: 15 July 2017This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
    corecore