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Classically held mechanisms for removing mountain topography (e.g., erosion and gravitational collapse) require 10-100Myr
or more to completely remove tectonically generated relief. Here, we propose that mountain ranges can be completely and
rapidly (<2Myr) removed by a migrating hotspot. In western North America, multiple mountain ranges, including the
Teton Range, terminate at the boundary with the relatively low relief track of the Yellowstone hotspot. This abrupt
transition leads to a previously untested hypothesis that preexisting mountainous topography along the track has been
erased. We integrate thermochronologic data collected from the footwall of the Teton fault with flexural-kinematic
modeling and length-displacement scaling to show that the paleo-Teton fault and associated Teton Range was much longer
(min. original length 190-210 km) than the present topographic expression of the range front (~65 km) and extended across the
modern-day Yellowstone hotspot track. These analyses also indicate that the majority of fault displacement (min. 11.4-12.6 km)
and the associated footwall mountain range growth had accumulated prior to Yellowstone encroachment at ~2Ma, leading us to
interpret that eastward migration of the Yellowstone hotspot relative to stable North America led to removal of the paleo-Teton
mountain topography via posteruptive collapse of the range following multiple supercaldera (VEI 8) eruptions from 2.0Ma to
600 ka and/or an isostatic collapse response, similar to ranges north of the Snake River plain. While this extremely rapid
removal of mountain ranges and adjoining basins is probably relatively infrequent in the geologic record, it has important
implications for continental physiography and topography over very short time spans.

1. Introduction

Studies of mountain ranges commonly invoke erosion and
extensional collapse to explain the reduction of topographic
relief [1–5] and rarely do such studies consider less
common, but geologically significant mechanisms such as
supercalderas. In regions that have experienced a prolonged
history of explosive volcanism and particularly regions
impacted by supercalderas eruptions, it is useful to consider
whether or not these cataclysmic mechanisms could denude
or even completely diminish mountain topography where it
intersects the caldera boundaries. In the Basin and Range
province in the western US, the ranges generally represent

the uplifted footwalls of crustal-scale normal faults [6]. In
the northern Basin and Range of Idaho and Wyoming, the
NNW striking crustal-scale normal faults and their associ-
ated uplifted footwall mountain blocks and adjoining half-
grabens terminate where they intersect the anomalous low
relief of the Snake River Plain (SRP; Figure 1). The SRP
marks the ENE migration of the Yellowstone hotspot
(YHS), and the truncation of Basin and Range structures
on either side of the SRP leads to the hypothesis that the
YHS may have somehow removed the associated mountain
topography [7–10]. The Teton, Gallatin, Madison, and
Centennial ranges all abut and appear to be truncated by
the 2.0-0.6Ma Yellowstone caldera and two studies [9, 10]

GeoScienceWorld
Lithosphere
Volume 2021, Article ID 1052819, 27 pages
https://doi.org/10.2113/2021/1052819

Downloaded from http://pubs.geoscienceworld.org/gsa/lithosphere/article-pdf/doi/10.2113/2021/1052819/5448430/1052819.pdf
by guest
on 25 November 2021

https://orcid.org/0000-0002-3075-5178
https://orcid.org/0000-0002-6521-7935
https://orcid.org/0000-0002-8288-7236
https://orcid.org/0000-0003-2831-9139
https://orcid.org/0000-0002-0725-7250
https://orcid.org/0000-0003-3398-5830
https://orcid.org/0000-0003-0895-3351
https://orcid.org/0000-0002-1400-6919
https://orcid.org/0000-0003-4992-8232
https://orcid.org/0000-0002-9288-2850
https://doi.org/10.2113/2021/1052819


previously speculated that the Teton and Gallatin ranges
may have been initially continuous across the caldera based
on their similar topographic grains and footwall strata.
However, this hypothesis has remained untested and, if sup-
ported, the potential implications for fault growth, regional
landscape evolution, and topographically controlled conti-
nental drainage remain unclear but could be significant.

Although it is expected that the faults and the footwall
mountain ranges transected by the hotspot track would be
removed and thus cannot be directly observed, it is possible
to determine if there is missing fault length based on deter-
mination of maximum displacement for each fault, as there
is a robust empirical relationship between the length of faults
and the maximum accumulated displacement (e.g., [11] and
references therein). In this scenario, if the maximum dis-
placement accumulated on a fault can be independently
determined, the displacement can be compared with empir-
ically determined length-displacement scaling relationships
to identify any potential missing fault length that may have

existed prior to migration of the hotspot along the track.
Although such an exercise could be carried out for any of
the ranges abutting the hotspot track, the Teton normal fault
is an ideal candidate for such a test, due to the age control
and delineated caldera extents of the three supercaldera
events that may have affected Teton Range paleotopography.
However, estimates of displacement magnitude on the Teton
fault and, to a lesser extent, the long-term fault slip history,
have remained varied and elusive. Additionally, the position
of the Teton fault at the confluence of four tectonically
unique provinces, including the Basin and Range extensional
province, the Yellowstone caldera and associated Snake
River Plain, the Sevier fold-and-thrust-belt, and the
Laramide Gros-Ventre-Wind River uplift, has further com-
plicated a genetic understanding of Teton fault motion.

Previous displacement estimates across the Teton fault
range from 2 to 11 km ([12] and references therein). This
large degree of uncertainty reflects the lack of subsurface
control, the challenges of imaging through hanging wall
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Figure 1: Regional digital elevation model (DEM) of the Snake River Plain in the northern Basin and Range showing the track of the
Yellowstone hotspot. Positions and time intervals of the Yellowstone plume derived from [64, 65]. The Snake River Plain is the only
relatively flat zone transecting the greater Rocky Mountain-Sierra Madre chain that extends from central Mexico in the south to the
Canadian Yukon in the north, which we interpret to indicate a causal link between the hotspot track and the removal of topography.
The position of Figure 2 is also shown.
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glacial till and coarse fluvial deposits, and the various criteria
used to interpret offset. Despite this, most geophysical and
stratigraphic studies yield maximum displacement estimates
of 7-11 km [13–17], with lower estimates mostly confined
to studies that examine stratigraphic tilting of Pliocene-
Quaternary tuffs [12, 18, 19]. Because the latter studies
focus on relatively young features, they may only record
more recent increments of motion and thus yield lower
displacement estimates.

The idea that the Teton fault could continue much far-
ther north than traditionally interpreted on the basis of
extent topography also has potential implications for seismic
hazard evaluation. The Teton-Yellowstone region represents
one of the most seismically active areas in the Intermountain
US [20]. However, the Teton fault remains enigmatically
quiescent and has not produced an earthquake >Mw 3.0 in
recorded history [21–23]. The two most recent fault ruptures
along the Teton fault were interpreted as Mw 6.8 and 7.1

events resulting from 1.3m to 2.8m of slip at ~4,800 and
7,900 ka, respectively [23], based on trenching studies
[24–26]. If the slip rate (0.16mmyr-1) determined from
those events is extrapolated to present-day, the predicted slip
deficit of ~2m suggests the Teton fault is capable of generat-
ing anMw ~ 7:0 earthquake on known segments [12, 24–28].
However, if it can be demonstrated that the active Teton
fault is much longer than previously recognized, this could
have major implications for understanding fault length-
related seismic hazard potential in this region (e.g., [29]).

Here, we synthesize the motion history of the Teton fault
and explore the Teton Range removal hypothesis with a
combination of new analyses and integration of previous
datasets, including (1) new apatite (U-Th)/He (AHe) data
for two new transects (Static Peak and Eagles Rest) and the
upper part of the Mount Moran transect (Figure 2), which
are integrated with previously reported AHe and apatite fis-
sion track (AFT) data [10]; (2) 1-D numerical models that
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constrain the likely range of geothermal gradients that can
influence the closure depth of AHe and AFT data; (3)
development of inverse thermal history models for all
transects based on the integration of new thermochronol-
ogy data and geothermal gradient models; (4) integration
of previously reported [30] flexural-kinematic models of
crustal-scale normal fault evolution to constrain the various
contributions of footwall uplift and hanging wall drop to total
displacement; and (5) displacement analyses for transects
based on the integration of inverse thermal history results,
calculated geothermal gradients, flexural-kinematic model-
ing, and stratigraphic/structural relationships. Combined,
these analyses allow for predictions of northern (and south-
ern) Teton fault projections based on fault growth models,
length-displacement scaling relationships, and displacement
gradient analyses. Finally, we discuss possible mechanisms
for removing the northern paleo-Teton Range topography
and the implications that a northern fault extension may
have for future seismic hazard assessments.

2. Methods

2.1. AHe and AFT Thermochronology. AHe data from two
new transects collected at Static Peak and Eagles Rest Peak
are here added to previously reported AHe and AFT data
[10, 31, 32], which includes both multisample transects
and isolated lower elevation samples collected along strike
along the range front (Tables 1–6, Figure 2). Additionally,
because a previous study [10] originally included multi-
grain aliquots in their study (i.e., multiple grains run as sin-
gle aliquots) for multiple samples along the higher elevation
parts of the Moran transect, new grains were separated for
single-grain analysis of those samples. These new single-
grain analyses are here combined with previous single-
grain analyses from that same study to provide analytical
consistency for input into inverse thermal history and
displacement models. To make the dataset internally consis-
tent, ages for the previously reported data [10, 31, 32] were
recalculated using the same procedure in QTQt [33] that
was used for calculating ages for the new data reported here.
These recalculated ages rarely varied more than 1-2% from
the originally reported ages. For both the new and previously
reported AHe data, apatite was separated using standard
gravity and magnetic techniques. For data derived from the
[10] study, He was measured at Virginia Tech and U-Th
were measured at the University of Arizona for single-
grain aliquots. For the new analyses presented here, He
and U-Th-Sm were measured for single-grain aliquots at
the University of Illinois Helium Analysis Laboratory using
standard techniques [34]. Each grain was outgassed via heat-
ing to 950-1050°C for three minutes using a diode laser. U,
Th, and Sm abundances were analyzed using a PrismaPlus
QMG 220 quadropole mass spectrometer. A minimum of
six aliquots were analyzed for each new sample, although
due to persistent challenges with apatite yield and quality
for the Teton samples, AHe grain ages >±1σ from the mean
were removed from the final mean calculation (~14% of the
total aliquots run). AFT data for the Moran transect was
derived directly from [10].

2.2. Inverse Thermal History Modeling. All inverse thermal
history models were run using the software package QTQt
v.64R5.6.0 [33], which employs a Markov chain Monte
Carlo (MCMC) inversion approach. All data and parameters
are reported here in accordance with the recommendations
of previous methodological studies [35, 36]. AHe data inputs
and grain measurements are shown in Tables 1–4. AFT data
that were considered in the Moran transect are shown in
Tables 5 and 6. All models include a present-day surface
temperature of 4°C (average annual temperature for the
Jackson Valley) and an atmospheric lapse rate of 6.5°Ckm-1.
The geothermal gradient prescribed in the QTQt models is
fixed through time (fixed temperature offset) and is derived
from the modeled geothermal gradient values of 25, 27, and
29°Ckm-1, for the southern (Rendezvous), central (Static
Peak and Grand), and northern (Moran and Eagles Rest)
transects, respectively. Model priors were 60 ± 60Myr for
time and 70 ± 70°C for temperature, which represents the
entire range of ages and closure temperatures for the AHe
and AFT systems. All models included consideration of
the radiation damage model [37]. AFT annealing is modeled
using the multicompositional algorithms of [38, 39]. Each
model was run for 10,000 burn-in iterations and 20,000
postburn-in iterations, with a uniform birth proposal
distribution. Models presented are the expected T-t histo-
ries, which represent the weighted average of accepted
models. The acceptance rates for each model are included
in Figures 3 and 4. For a complete treatment of the MCMC
inversion approach employed by QTQT, the reader is
referred to [33]. The comparison between modeled and
observed ages, which are essential for evaluating the validity
of inverse model results, are included for each model
(Figures 3 and 4).

2.3. Geothermal Gradient Modeling. Because the models
presented here must include a necessary dependency on
the observed or assumed thermal structure of the upper
crust (~15 km), it is useful to consider any available con-
straints on these modeling variables, particularly because
the thermal structure of the lithosphere in the Teton-
Yellowstone region is complex, owing to migration of the
Yellowstone hotspot. In the continental crust, the geother-
mal gradient is controlled by the mantle heat flow (Qm) into
the base of the crust, the internal radiogenic heat produc-
tion (A), and thermal conductivity (K) of the crust, the
surface heat flow (Qo), and any advectionary heat trans-
port processes.

Depth filtered P-wave seismic inversion shows that,
despite being immediately adjacent to the Yellowstone
hotspot, the Teton Range is underlain by a relatively fast
P-wave velocity zone from 2 to 14 km depth, likely indicat-
ing a zone of relatively cold crust adjacent to the low-
velocity partial melt zones beneath the present-day caldera
[40]. Because the modern Teton Range appears to be under-
lain by relatively cold crust despite being as close to the
Yellowstone hotspot as at any point in its history, we assume
in our models that the present-day geothermal gradient rep-
resents the maximum geothermal gradient experienced by
these rocks in the timeframe being considered (>50Ma-
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present). These P-wave tomographic models agree closely
with previous work [41], which showed a present-day geo-
thermal gradient of 18-27°C for Teton region. Here, the
measured surface heat flow values (Figure 5) [42] are used
as constraints, and mantle heat flow and radiogenic heat
production are varied to derive a range of possible geother-
mal gradients for the Teton Range. The range of steady-
state geotherms is calculated by solving the heat conduction
equation with a contribution of radiogenic heat production:

T yð Þ = To +
Qo

K
y + A

2K y2, ð1Þ

where T is temperature for a given depth (y), To is surface
temperature, and Qo is the surface heat flow. In the geother-
mal gradient models presented here, heat advection is not
considered, as thermal-kinematic models of Teton uplift sce-
narios by [30] showed minimal advectionary heat transport
and yield geothermal gradients of 20-27°Ckm-1 for the
upper 10 km of the crust. Here, the geothermal gradient is
constrained using surface heat flow values of 0.075, 0.081,
and 0.087Wm-2 for the southern, central, and northern
Tetons, respectively [42]. By using fixed Qo values for geo-
thermal gradient calculations, the range of possible Qm and
A values can be explored, and those values for each model
are shown in Table 7. Although there are multiple methods
for characterizing the distribution of radiogenic heat pro-

duction (A) in the crust, including layered and exponential
models, it is here modeled as a constant average value
throughout the entire 30 km crustal thickness. Two-
dimensional thermal-kinematic models of [30] that include
exponential models of heat production in the crust still yield
near surface (<10 km) geothermal gradients of 20-27°Ckm-1,
similar to modern geothermal gradients calculated by [41].

2.4. Flexural-Kinematic Modeling. Flexural-kinematic models
[30] are included here to evaluate how a range of subsurface
geometries for the Teton fault and the effective elastic thick-
ness of the crust in the region could influence the footwall
isostatic response during fault displacement. To constrain
the range of viable geometries and crustal parameters, the
topographic profiles of each model result were compared
to east-west swath topographic profiles from the Gros
Ventre uplift across the Teton Range near Mount Moran
to the Teton Basin west of the range. Swath profiles were
produced using the Swath Profiler ArcGIS add-in [43] and
a 10m DEM. The swath was aligned throughMount Moran,
which was identified as the locus of maximum displacement
[10]. The SwathProfiler calculates a maximum, minimum,
and mean elevation profile based on topographic profiles
of 50 equally spaced transects within the 6 km swath width,
and these calculated profiles can then be compared with
topographic profiles produced by various iterations of the
flexural-kinematic model. These comparisons were then

Table 5: Spontaneous (Ns) and induced (Ni) apatite fission track counts and Dpar compositional values for samples TR-08-15, TR-08-03,
and TR-08-32 from the Mount Moran transect. Zeta calibration factor ðζÞ = 315:4 ± 13:2, ρd = 1449800 for TR-08-15, ρd = 1499450 for
TR-08-03, ρd = 1338080 for TR-08-32, and Nd = 4262 for all three samples. Track count and length data were used as inputs for the inverse
thermal history model of the Moran transect. Calculated central ages input into inverse thermal history models are 37:99 ± 2:63Ma
(TR-08-15), 13:62 ± 1:88Ma (TR-08-03), and 11:70 ± 1:62Ma (TR-08-32).

TR-08-15 TR-08-03 TR-08-32
Ns Ni Dpar Ns Ni Dpar Ns Ni Comp

4 31 1.5 8 87 1.6 4 19 36

11 37 1.5 2 35 1.4 1 29 28

12 117 1.6 2 44 1.5 2 38 60

15 69 1.6 1 45 1.3 6 109 50

6 54 1.6 0 13 1.5 2 49 60

6 65 1.6 1 17 1.0 4 62 50

7 44 1.9 2 15 1.4 4 49 50

19 66 1.4 3 19 1.7 3 47 60

37 222 1.7 4 57 1.7 1 29 60

22 148 1.8 3 88 1.2 1 48 50

17 96 1.8 2 38 1.5 2 25 50

8 71 1.7 1 20 1.3 0 15 50

3 26 2.1 1 30 1.5 5 34 60

9 59 1.4 3 41 1.4 4 90 50

6 42 1.4 2 63 1.4 3 63 70

10 61 1.6 1 35 1.3 8 137 60

21 105 1.6 2 49 1.1 1 49 50

27 116 1.8 5 47 0.9 1 31 60

16 100 1.7 8 133 1.4 1 30 36

2 19 1.7 1 16 1.8 3 56 50
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Table 6: Apatite fission track lengths, measured angles from the c-axis, and Dpar compositional values for samples TR-08-15 and TR-08-03
from the Mount Moran transect. Track count and length data were used as inputs for the Moran inverse thermal history model. No track
length data were collected for TR-08-32.

TR-08-15 TR-08-15 TR-08-03
Length (μm) Angle (°) Dpar Length (μm) Angle (°) Dpar Length (μm) Angle (°) Dpar

13.2 75.8 1.3 9.8 69.6 1.4 14.3 67.7 1.4

13.2 75.8 1.3 9.8 80.8 1.6 11.7 40.8 1.9

11.3 46.5 1.3 12.6 32.1 1.6 14.9 41.1 1.8

7.6 78.0 1.7 10.2 85.8 1.9 10.4 72.9 1.8

14.4 87.1 1.3 9.7 58.3 1.9 7.3 70.8 1.7

10.1 64.1 1.8 10.9 89.5 1.9 12.2 57.6 1.7

9.4 3.0 1.7 14.8 51.6 1.9 15.0 57.5 1.4

12.2 89.7 1.3 11.9 44.8 1.9 11.8 39.4 1.5

11.6 38.7 1.5 11.7 46.0 1.9 13.9 24.0 1.9

11.8 33.2 1.6 8.5 54.2 1.8 9.9 38.1 1.7

10.5 58.7 1.5 13.2 39.5 1.8 12.8 54.2 1.7

11.0 49.1 1.3 10.2 4.0 1.8 12.9 84.7 1.5

13.4 45.4 1.3 13.7 47.6 1.8 11.7 53.8 1.6

12.6 44.1 1.3 14.2 64.4 1.5 11.1 88.0 1.3

12.5 75.4 1.3 9.5 43.1 1.9 11.5 63.8 1.4

13.1 47.8 1.3 11.9 38.9 1.9 13.6 62.2 1.4

8.4 55.8 1.7 15.3 27.6 1.7 14.8 58.3 1.5

8.7 41.5 1.7 13.8 25.1 2.0 12.3 88.5 1.5

11.5 45.1 1.7 9.1 30.3 2.0 15.7 90.0 1.4

9.7 37.6 1.7 14.1 70.6 1.4 8.1 55.6 1.9

11.6 75.7 1.7 12.6 43.4 1.4 11.2 46.4 0.7

10.0 68.5 1.7 14.6 37.6 1.4 14.4 50.5 1.3

12.2 48.9 1.7 14.3 70.2 1.4 14.9 57.8 1.5

9.4 72.6 1.7 7.1 73.0 1.9 10.0 27.2 1.3

13.4 72.7 1.7 12.6 76.3 1.5 12.4 1.6 1.1

10.2 27.4 1.7 12.5 47.0 1.7 14.4 32.2 1.1

9.9 34.7 1.7 11.5 10.5 1.7 13.4 33.4 1.3

12.0 72.8 1.7 9.0 51.8 1.5 13.4 48.4 1.5

11.4 68.5 1.5 9.5 21.6 1.5 12.5 56.1 1.1

13.1 67.6 1.5 9.8 55.7 1.6

15.0 22.9 1.5 8.1 44.0 1.6

10.2 63.2 1.7 15.2 34.7 1.7

11.1 78.2 1.3 12.8 37.9 1.7

10.4 26.7 2.0 14.3 72.4 2.6

12.4 71.5 1.6 11.8 89.2 2.6

12.1 85.8 1.6 13.8 46.4 2.0

12.0 60.8 1.6 8.8 40.3 1.4

13.5 33.2 1.5 15.2 80.0 1.7

12.3 69.8 1.6 13.3 57.9 1.5

13.5 79.0 1.8 13.3 60.7 1.9

15.5 22.6 1.9 11.3 67.6 1.6

11.3 86.5 1.9 12.8 23.4 1.6

11.8 75.8 1.9

12.1 76.6 1.9

10.0 72.3 1.7

10.7 48.9 1.8
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used to select a reference case for modeling the various
contributions of footwall uplift and hanging wall drop to
the total displacement. The details of this methodology
and the results of all models are described in [30]. Initial
flexural-kinematic models included near-surface fault dips
ranging from 45-70°, listric detachment depths of 15-
20 km, and effective elastic thickness (Te) values of 5, 10,
and 15 km, based on interpretations from multiple studies
of Basin and Range normal faults [44–46]. Footwall erosion
was not included in the simple model presented here, but
[30] considered incremental footwall erosion following each
displacement step that yields the range of total eroded thick-
ness interpreted in this system. Additionally, the models of
[30] included ongoing sedimentation in the modeled hang-
ing wall to match that observed in the Jackson Hole basin.
Those models of [30] yield similar results as our simple
model included here. Flexural-kinematic modeling was
completed using Move from Petroleum Experts. The
flexural-isostatic response in Move is described by the equa-
tion for a continuous 2D beam [47]:

q =D
d4w
dx4

+ ρm − ρcð Þgw, ð2Þ

where applied vertical load (q) required to produce a deflec-
tion (wðxÞ) is a function of the flexural rigidity (D). In this
equation, ρm is mantle density (3300 kgm-3), ρc is the den-
sity of the removed crustal material (2750 kgm-3), and g is
the acceleration of gravity (9.81m s-2). Flexural rigidity (D)
of the lithosphere is

D = E T3
e

12 1 − ν2ð Þ , ð3Þ

where E is Young’s modulus, Te is effective elastic thickness,
and v is Poisson’s ratio. Only the simple reference case
model (near-surface fault dip = 70°, listric detachment
depth = 15 km, Te = 5 km) determined by [30] is considered
here.

3. Results

3.1. Thermochronology and Inverse Thermal History
Modeling. All analytical results are shown in Tables 1–6.
As expected, AHe ages generally increase with increasing
elevation along each transect; however, the age elevation gra-
dients are highly varied between the five transects (Figure 6).
The Moran transect yields the steepest age-elevation gradi-
ent. In the southern and central Teton Range, inverse
thermal history models of the Rendezvous, Static Peak, and
Grand Teton transects yield periods of relatively rapid
Miocene to present cooling with onset ages of ~8Ma,
~15Ma, and ~9Ma, respectively (Figure 3). Inverse thermal
history models of the Moran and Eagles Rest transects in the
northern Teton Range yield a similar footwall cooling event
with onset ages of 10-8Ma (Figure 4). With the exception of
the Eagles Rest transect, inverse thermal history models of
the other four transects also yield an earlier Eocene-
Miocene cooling event; however, the expected T-t histories
show a substantial variation in age for the earlier cooling
event(s). The expected model for the Rendezvous, Static
Peak, Grand, and Moran transects yield Eocene-Miocene
cooling events of 48-41Ma, 31-23Ma, 50-26Ma, and 25-
19Ma, respectively, and the expected model for the Moran
transect also yields a separate cooling event at 61-40Ma.
However, the credible intervals increase substantially for
the earlier cooling histories predicted in the Rendezvous
(48-41Ma) and Grand (31-23Ma) transects. The Static Peak
and Moran (50-26Ma, 61-40Ma) inverse thermal history
models show narrower credible intervals for the earlier
cooling event at 31-23Ma and 25-19Ma, respectively, and
this is addressed in the discussion.

3.2. Geothermal Gradient Modeling. Twelve separate models
encompassing the likely range of present-day Teton region
geothermal gradients were produced (Figure 7). Models are
separated into three groups representing surface heat flow
values (Qo) of 0.075, 0.081, and 0.087Wm-2 that match
the observed conditions in the southern, central, and north-
ern Teton Range, respectively [42] (Figure 5). Despite the

Table 6: Continued.

TR-08-15 TR-08-15 TR-08-03
Length (μm) Angle (°) Dpar Length (μm) Angle (°) Dpar Length (μm) Angle (°) Dpar

10.0 46.7 1.8

11.1 31.4 1.9

14.3 45.4 1.6

15.6 70.6 1.5

9.8 63.3 1.5

11.3 50.2 1.8

10.8 75.7 1.6

13.7 35.9 1.6

11.4 65.8 1.6

10.3 36.3 1.6

13.2 65.6 1.8

11.8 72.6 1.7
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incorporation of a range of mantle heat flow (Qm) and radio-
genic heat production (A) values, models yield a relatively
small range of geothermal gradient values for the upper
5 km of the crust. Gradients ranged from 22 to 25°Ckm-1,
24 to 27°Ckm-1, and 26 to 29°Ckm-1 for the southern,
central, and northern Teton Range, respectively. In order
to produce the most conservative values for footwall
exhumation to be interpreted from the cooling history, the
maximum modeled geothermal gradient for each region
was used for inverse thermal history models and footwall
cooling calculations.

3.3. Flexural-Kinematic Modeling. The flexural-kinematic
response of the modeled Teton Range to the entire range
of parameters is reported in [30]. Here, we only report the
results from displacement studies of the base case model
(near-surface fault dip = 70°, Te = 5 km, Zd = 15 km) that
produced the closest match between the modeled and
observed flexural-topographic profile (Figure 8). In the
flexural-kinematic model, footwall uplift increases with
increasing displacement (Figure 9), with the footwall uplift
contribution to total displacement decreasing from ~35%
to ~23% as total displacement increases from 2 to 20 km

0

20

40

60

80

100

120

–140
Moran transects (MOR_011020_B)

Acceptance rates (time = 0.3410, temperature = 0.4768)

30 25 20 15 10 5 0
Time (Ma)

Te
m

pe
ra

tu
re

 (°
C)

Earlier uplift(?)
25-18 Ma

M1

M8

M2
M3

M4

M5
M6

M7 Total cooling
82-91 °C

Teton uplift
10-9 Ma to present

0

20

40

60

80

100

120

–140
Eagles Rest transects (ERP_010920_A)

Acceptance rates (time = 0.3898, temperature = 0.6185)

30 25 20 15 10 5 0
Time (Ma)

Te
m

pe
ra

tu
re

 (°
C)

Onset uplift
10-8 Ma

Highest elev. expected
model w/ credible envelope
Intermediate elev. samples
Lowest elev. expected
model w/ credible envelope

Temperature-time histories

E1

E4

E2

Total cooling
61-81 °C

80

70

60

50

30

20

10

Moran transect (MOR_011020_B)

30 40 50 60 80
Observed age (Ma)

(a)

(b)

(c)

(d)

M
od

el
 p

re
di

ct
ed

 ag
e (

°C
)

40

0
0 10 20 70

AFT age

AHe age

80

70

60

50

30

20

10

Eagles rest transect (ERP_010920_A)

30 40 50 60 80
Observed age (Ma)

M
od

el
 p

re
di

ct
ed

 ag
e (

°C
)

40

0
0 10 20 70

3120 m

2972 m

2607 m

Figure 4: QTQt inverse thermal history models for the (a) Moran and (b) Eagles Rest transects. The most recent onset of rapid cooling
interpreted to reflect onset of Teton faulting and uplift of the Teton Range, shown in pink. (c, d) Comparison of observed ages vs.
modeled predictions (QTQt expected model) for base case models. Individual samples included in the Moran (M1-M8) and Eagles Rest
(E1, E2, E4) models correspond to sample numbers shown in Table 3.

14 Lithosphere

Downloaded from http://pubs.geoscienceworld.org/gsa/lithosphere/article-pdf/doi/10.2113/2021/1052819/5448430/1052819.pdf
by guest
on 25 November 2021



(Figure 10). Based on the flexural-kinematic modeling, foot-
wall uplift (U fw) can be related to total displacement (x) by a
simple linear relationship:

U fw = 0:2457x: ð4Þ

This equation is used to calculate total displacement (x)
from estimated footwall uplift values determined from
inverse thermal history and geothermal gradient modeling.

4. Discussion

4.1. Onset and Slip History for the Teton Fault. Two periods
of relatively rapid cooling were identified in the inverse ther-
mal history models, with the exception of the Eagles Rest

transect, which currently yields only one pronounced cool-
ing event (Figures 3 and 4). In all transects, the more recent
event is interpreted to represent the final phase of Teton
fault footwall exhumation that initiated in response to fault
slip from ~10-8Ma to present. Given that our sample loca-
tions lie in the immediate footwall of the Teton normal fault,
we argue that this assumption is valid. These recent cooling
trends, which are recognized in all five transects, can mostly
be distinguished from the earlier cooling event which is dis-
cussed below. If the more recent event represents final Teton
fault motion, it yields a Teton fault slip onset of 15-8Ma,
with the majority of transects yielding onset ages of 10-8Ma.

The older cooling events predicted by some of the
inverse thermal history models (Figures 3 and 4) are more
difficult to reconcile, particularly because the credible
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reflect the obvious inflection point in that data. Calculated depth to the AHe zero age (i.e., Tc depth) based on depth below the valley
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29°Ckm-1 (Moran and Eagles Rest) are shown as yellow lines on each plot. The total footwall uplift is calculated as the difference
between the calculated Tc depth and the elevation of the lowermost sample for the Rendezvous, Static Peak, Grand, and Eagles Rest
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Peak preserves an early gradient similar in slope to that recorded at Rendezvous Peak, but it also records the reset ages at much higher
elevations than the three more southern transects, indicating a more complex motion history for the northern Teton fault.
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intervals increase substantially during the earlier cooling his-
tory. Also, because the inverse thermal history models
include the implicit assumption that these transects are ver-
tical, the ratio of the transect relief to the lateral distance of
the transect from the fault plane will control how much of
the history the transect records (greater relief records more
of the cooling history) and the degree to which the AHe ages
reflect fault motion (samples further from the projected fault
plane will have a cooling history that is less influenced by
fault slip-related cooling). In the Teton example, the most
recent 15-8Ma uplift event is predicted from the relatively
young low-elevation AHe ages, but because the higher eleva-
tion samples along each transect were collected at substan-
tially different distances from the fault plane, the response
of the ages to fault motion (and the subsequent cooling
and landscape response) could be impacted by such transect
artifacts.

Because of these possible sampling-related artifacts, we
chose to focus on the two transects (Static Peak and Moran)
that include the highest total relief and are laterally closest to
the interpreted Teton fault plane when interpreting this
earlier cooling event (Figures 3(b) and 4(a)). Inverse thermal
history models of the Static Peak and Moran transects both
yield a pronounced Oligocene-Miocene cooling event (30-

20Ma) that precedes the most recent 15-8Ma cooling event.
This cooling pattern, which we interpret to be related to slip
on the Teton fault, can be clearly distinguished in along-
strike plots of AHe ages that highlight the variable magni-
tude of cooling along strike (Figure 11). Because this earlier
cooling event significantly postdates the most recent phase of
Laramide orogenesis in the region (Laramide, Cretaceous-
Paleocene) [48], we provisionally interpret this earlier cool-
ing event to result from the earliest normal motion on the
Teton fault. If correct, this would make the Teton fault one
of the oldest Basin and Range structures [49]; however, we
emphasize that this interpretation remains provisional until
further data and analysis can be completed in a future study.

4.2. Footwall Exhumation from Inverse Thermal History
Modeling. For the most recent cooling event predicted by
the inverse thermal history models, which is interpreted to
reflect Teton fault motion from 15-8Ma to present, footwall
cooling estimates can be integrated with the modeled geo-
thermal gradients to calculate footwall exhumation magni-
tudes. For clarity, footwall cooling is the total cooling of
the highest elevation footwall sample that yields a reset
AHe age (i.e., an age younger than the age of fault slip onset)
from each transect and footwall exhumation is calculated by
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integrating the maximum modeled geothermal gradient for
each transect with total cooling. These calculations yield
base case footwall exhumation magnitudes of 2.6-3.0 km
(25° Ckm-1, 64-76°C) for Rendezvous Peak, 2.7-3.0 km
(27° Ckm-1; 73-81°C) for Static Peak, 2.4-2.6 km (27° Ckm-1;
66-70°C) for Grand Teton, 2.8-3.1 km (29° Ckm-1; 82-91°C)
for Mount Moran, and 2.1-2.8 km (29° Ckm-1; 61-81°C)
for Eagles Rest Peak. These estimates only consider the total
cooling that occurred during the most recent rapid cooling
event commencing at 10-8Ma (Figures 3 and 4). If the
earlier Oligocene-Miocene cooling event predicted in the
Moran and Static Peak models is considered a part of the
total Teton fault slip history, then these two transects yield
footwall exhumation estimates of 4.1 km (29° Ckm-1;
~120°C) and 3.5 km (27° Ckm-1; ~95°C), respectively. As
the Moran transect yields the greatest footwall cooling and
consequently the greatest calculated footwall exhumation
of all the transects analyzed, the Moran region is here inter-
preted to represent the approximate center of the Teton
fault, following [10]. Thus, maximum displacement (Dmax)
for the Teton fault is calculated below using the Moran foot-
wall exhumation values.

The cooling magnitudes derived from the inverse ther-
mal history models and the calculated footwall exhumation
magnitudes can also be compared with similar estimates
derived from AHe age-elevation relationships (Figure 6),
which can be useful for simple determinations of fault slip
rate variations and total exhumation magnitudes. In this rel-
atively simple analysis, it is assumed that the closure T of the
AHe system is ~70°C [50, 51], the geothermal gradient is the
same as that used for the inverse thermal history model of
each transect, and any sample with an AHe younger than
the age of fault onset as predicted by the inverse thermal his-
tory was buried at a depth greater than the AHe Tc prior to
the onset of the latest Teton fault motion (~15-8Ma). Thus,
the difference between the elevation of the highest sample
with an AHe age younger than the age of fault slip onset
and the predicted depth to the AHe Tc yields the predicted
total exhumation for each transect. In the southern and cen-
tral Teton Range, this exercise yields footwall exhumation
magnitudes of ~3.1, ~2.6, and~2.7 km for the Rendezvous,
Static Peak, and Grand transects, respectively. In the
northern Teton Range, these calculations yield footwall
exhumation estimates of ~2.9 km for both the Moran and
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Eagle Rest transects. If the Oligocene-Miocene cooling event
is included for the Static Peak (31-23Ma) and Moran (25-
19Ma) transects, a similar analysis yields total exhumation
magnitudes of 3.3 and 4.1 km, respectively. All of these esti-
mates are very similar to the footwall exhumation estimates
calculated from the total cooling.

4.3. Total Displacement Analyses. The calculated footwall
exhumation derived from the inverse thermal history
models to determine the range of possible Dmax values for
the Teton fault. To do this requires the implicit assumption
that the magnitude of footwall uplift due to fault displace-
ment is approximately equal to the calculated magnitude of
exhumation of the lower elevation samples along the tran-
sect that yield reset AHe ages. This assumption should gen-
erally hold true here, as the samples being exhumed in the
lower part of the transect were hotter than the AHe Tc when
the final phase of Teton fault slip begins. As discussed above,
[30] evaluated how parameters such as surface fault dip, Te,
Zd , and displacement will influence the varying contribu-
tions of footwall uplift and hanging wall drop contribute to
Dmax. Using the linear relationship between footwall uplift
and total displacement derived from the base case flexural-
kinematic model of [30] that provided the best match to

the modern day flexural profile (Figure 8; fault dip = 70°,
Te = 5 km, Zd = 15 km) yields minimum calculated Dmax
values of 11.4-12.6 km for Mount Moran footwall uplift of
2.8-3.1 km for the most recent phase of footwall cooling. If
the exhumation estimate included the Oligocene-Miocene
cooling event identified in the inverse thermal history
models, this would yield total displacement values of at least
16.7 km. Because that earlier event remains poorly con-
strained and will be the focus of a future study, we currently
consider the displacement estimates of 11.4-12.6 km to rep-
resent a minimum Dmax for the most recent phase of Teton
fault motion. Displacement estimates for the other transects
are included in Figure 10.

4.4. Length of the Paleo-Teton Fault. If the calculated dis-
placement for the Moran transect represents Dmax for the
entire Teton fault, that value can be used to estimate the
original length of the paleo-Teton fault. Studies of fault
dimensions spanning more than eight orders of magnitude
([11] and references therein, [52]) demonstrate a near lin-
ear scaling between fault length (L) and displacement and
show that Dmax is always ~1 to 6% of L for large faults
(Dmax > 104m; Figure 12). Using the conservative assump-
tion that Dmax is 6% of L in this case, displacement estimates
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displacement, which is less than footwall uplift determined by this study.

22 Lithosphere

Downloaded from http://pubs.geoscienceworld.org/gsa/lithosphere/article-pdf/doi/10.2113/2021/1052819/5448430/1052819.pdf
by guest
on 25 November 2021



from the Mount Moran transect would yield a minimum
estimated fault length of 190-210 km, which is consistent
with length-displacement scaling relationships of other
major Basin and Range normal faults (e.g., [53]), including
the Wasatch fault [54, 55]. Provided that Mount Moran rep-
resents the approximate paleo-fault center, the Teton fault
would have extended a minimum of ~85-105 km north and
south of Moran prior to the onset of Huckleberry Ridge vol-
canism in the Yellowstone hotspot at ~2Ma [56, 57]. These
projections assume that fault propagation was not limited
by interaction with other major structures. South of Mount
Moran, the Teton fault continues for ~40 km prior to inter-
secting and offsetting the Laramide Cache Creek thrust
[58]. South of that point, detailed mapping by multiple stud-
ies indicates that the Teton fault continues at least 30 km fur-
ther south [59–61], yielding a minimum mappable southern
extent at least 70 km south of Mount Moran.

To the north, the modern topographic expression of the
Teton fault footwall only extends ~20 km and modern fault
scarps that are possibly associated with modern Teton fault
motion only extend another ~5 km [28], which is substan-

tially less than fault lengths predicted by L −Dmax relation-
ships. As such, we interpret that the Teton fault and its
associated footwall topography originally continued at least
85-105 km north of Mount Moran, 55-65 km farther than
currently recognized. Because inverse thermal history
models indicate that most of the Teton fault motion and
related footwall topography development had accrued prior
to multiple VEI 8 (volcanic explosivity index) supercaldera
eruptions, including the Huckleberry Ridge (~2.0Ma), Mesa
Falls (~1.3Ma), and Lava Creek (~0.6Ma), we interpret that
this northern paleo-Teton Range was removed/diminished
following these events. In this scenario, if the Teton fault
were to follow the same approximate trend, it would have
extended at least as far north as Yellowstone Lake. At Mount
Moran, the inverse thermal history models indicate that the
lowest elevation sample had cooled to ~20°C by the onset of
Huckleberry Ridge volcanism at ~2.0Ma, and thus, all but
<1.0 km of total footwall uplift was in place at that time.

4.5. Removal of the Paleo-Teton Mountain Range. Although
limited direct evidence currently exists to determine what

Moran bay

Moran Canyon

Jackson
lake

Snowshoe
Canyon

Figure 13: DEM (National Park Service, 2014) showing the linkage patterns of the modern Teton fault scarp segments between Mount
Moran and Eagles Rest Peak (location shown on Figure 2). This zone coincides the position of a major stepover in the modern fault
scarp at Snowshoe Canyon, a pronounced ~0.5 km drop in average topography, based on topographic swath profiling of [63], a
pronounced increase in AHe ages at equivalent elevations between Mount Moran and Eagles Rest. This is provisionally interpreted to
represent a down-to-the-north zone of motion normal to the main Teton fault, similar to normal fault zones mapped parallel to the
Snake River plain by [64]. The precise position of the structures that accommodate this motion remains unclear but will be the focus of
future detailed mapping efforts.
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happened to the northern extent of footwall topography, it is
possible that some of the range was removed by collapse into
the caldera either following the initial Huckleberry Ridge
and later eruptive events or as a result of posteruptive iso-
static collapse (e.g., [8]). Detailed mapping has shown that
both the Huckleberry Ridge and Lava Creek [62] calderas
would have transected the projected northern extension of
footwall topography (Figure 2), but unfortunately, any struc-
tural or deformational evidence of the paleotopography
removal north of this point would be buried by the subse-
quent rhyolite flows [28].

Flexural modeling was used to show that arching and
subsidence of Paleozoic strata and Mesozoic fold hinges in
the ranges north of the eastern Snake River Plain could be
accommodated by isostatic adjustment to a relatively dense
midcrustal sill [28]. Models from that study showed down-
ward flexure of 2.8-4.2 km of the upper crustal strata was
possible, depending on the depth of compensation. P-wave
seismic inversion was used to interpret a lower-crustal basal-
tic body beneath the present-day Yellowstone hotspot [40]
that may produce a similar isostatic response to that mod-
eled in [8]. Traditionally, the arching of the north dipping
base Paleozoic unconformity observed on many of the Teton
peaks was interpreted to act as a key pinning horizon that
tracked normal motion on the Teton fault. However, con-
touring of the compiled AHe data (Figure 11) shows that
the highest magnitude of recent cooling does not correspond
to the arched shape of this unconformity, and thus, it may be
possible that the northern dip on the unconformity, like the
Paleozoic units north of the Snake River plain, may be the
result of such subsidence. Additionally, the contoured AHe
data shows a pronounced and abrupt break in AHe ages
between the Mount Moran and Eagles Rest transects, with
much older AHe ages observed along the Eagles Rest tran-
sect at equivalent elevations to samples on the Moran tran-
sect. Provisionally, we interpret this to indicate that Eagles
Rest Peak and the associated topography to the north may
have experienced postfault motion subsidence (down-to-
the-north) along a structure normal to the Teton fault.
Coincidentally, this break, which is approximately located
between Mount Moran and Eagles Rest Peak, also corre-
sponds to (1) a pronounced eastern shift in the modern
Teton fault scarp on the south side of Eagles Rest Peak at
Snowshoe Canyon (Figure 13) and (2) an abrupt drop of
the northern Teton average elevation by ~0.5 km between
Mount Moran and Eagles Rest Peak, as indicated from
along-strike topographic swath profiling (Figure 11) [63].
Although the nature, genesis, and kinematics of this topo-
graphic break will form part of a future study, it is possible
that this structure may act in a similar fashion to the hotspot
track parallel normal faults recognized along the Snake River
plain [61].

5. Conclusions

New inverse thermal history models based on a compilation
of new and previously existing AHe+AFT data is combined
with new models of variable geothermal gradients along-
strike of the Teton Range to define the timing of Teton fault

slip and the total magnitude of exhumation, as a function of
cooling. These results are combined with flexural-kinematic
modeling to determine the total displacement magnitude
accrued on the Teton fault at multiple transects, and to iden-
tify the maximum accumulated displacement (Dmax) that
occurred in the vicinity of Mount Moran, which leads us
to interpret that area as the approximate center of the
paleo-Teton fault. These displacement estimates are then
combined with fault length-displacement scaling relation-
ships of global normal fault datasets to demonstrate that
the Teton fault and its associated footwall topography com-
prising the Teton Range may have originally been much lon-
ger than the present-day topographic expression. In this
scenario, we interpret that the northern paleo-Teton Range
extended 85-105 km north of Mount Moran, well into the
footprint of the modern Yellowstone hotspot track. Addi-
tionally, because our inverse thermal history models indicate
that Teton fault slip onset started at least by 15-8Ma (and
possibly even earlier in the Oligocene), we interpret that
most of the displacement had accumulated on the Teton
fault prior to migration of the Yellowstone hotspot into its
current position. In this scenario, the northernmost paleo-
Teton Range would have been removed following the Huck-
leberry Ridge (~2.0Ma) and later eruptions and/or subsided
as a part of an isostatic response to a dense basalt body in the
lower crust beneath Yellowstone, similar to the interpreted
evolution of multiple mountain ranges along the northern
edge of the Snake River plain. Some of this topographic
reduction may have been accommodated by down-to-the-
north structures provisionally indicated by multiple lines of
evidence. This relatively rapid removal of mountain topog-
raphy (<2Myr) represents a potentially significant control
on continental physiography, biogeography, continental-
scale fluvial drainage, and climate over relatively short time
spans.
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