15 research outputs found
Using System Dynamics Models to Understand and Improve Application Landscape Design
Application landscape design has become a key challenge for enterprises. For further exploration of related enterprise architecture benefits establishing shared mental models among all application landscape designers is required, i.e. architectural thinking. Thus, to complement existing approaches by modeling human behavior and decision effects which form implicit application landscape evolution principles, we propose the use of System Dynamics. We derive five guidelines from literature for developing a corresponding method. To exemplify the approach, a concrete causal loop diagram on the topic of technological standardization is presented. A subsequent evaluation based on expert interviews demonstrates the model content validity as well as the modeling method\u27s suitability to foster communication among different communities of practice
Genome-wide association study identifies a variant in HDAC9 associated with large vessel ischemic stroke
Genetic factors have been implicated in stroke risk but few replicated associations have been reported. We conducted a genome-wide association study (GWAS) in ischemic stroke and its subtypes in 3,548 cases and 5,972 controls, all of European ancestry. Replication of potential
signals was performed in 5,859 cases and 6,281 controls. We replicated reported associations between variants close to PITX2 and ZFHX3 with cardioembolic stroke, and a 9p21 locus with large vessel stroke. We identified a novel association for a SNP within the histone deacetylase 9(HDAC9) gene on chromosome 7p21.1 which was associated with large vessel stroke including additional replication in a further 735 cases and 28583 controls (rs11984041, combined P =
1.87Ă10â11, OR=1.42 (95% CI) 1.28-1.57). All four loci exhibit evidence for heterogeneity of effect across the stroke subtypes, with some, and possibly all, affecting risk for only one subtype. This suggests differing genetic architectures for different stroke subtypes
Common variation in PHACTR1 is associated with susceptibility to cervical artery dissection
Cervical artery dissection (CeAD), a mural hematoma in a carotid or vertebral artery, is a major cause of ischemic stroke in young adults although relatively uncommon in the general population (incidence of 2.6/100,000 per year). Minor cervical traumas, infection, migraine and hypertension are putative risk factors, and inverse associations with obesity and hypercholesterolemia are described. No confirmed genetic susceptibility factors have been identified using candidate gene approaches. We performed genome-wide association studies (GWAS) in 1,393 CeAD cases and 14,416 controls. The rs9349379[G] allele (PHACTR1) was associated with lower CeAD risk (odds ratio (OR) = 0.75, 95% confidence interval (CI) = 0.69-0.82; P = 4.46 Ă 10(-10)), with confirmation in independent follow-up samples (659 CeAD cases and 2,648 controls; P = 3.91 Ă 10(-3); combined P = 1.00 Ă 10(-11)). The rs9349379[G] allele was previously shown to be associated with lower risk of migraine and increased risk of myocardial infarction. Deciphering the mechanisms underlying this pleiotropy might provide important information on the biological underpinnings of these disabling conditions
Atrial fibrillation genetic risk differentiates cardioembolic stroke from other stroke subtypes
AbstractObjectiveWe sought to assess whether genetic risk factors for atrial fibrillation can explain cardioembolic stroke risk.MethodsWe evaluated genetic correlations between a prior genetic study of AF and AF in the presence of cardioembolic stroke using genome-wide genotypes from the Stroke Genetics Network (N = 3,190 AF cases, 3,000 cardioembolic stroke cases, and 28,026 referents). We tested whether a previously-validated AF polygenic risk score (PRS) associated with cardioembolic and other stroke subtypes after accounting for AF clinical risk factors.ResultsWe observed strong correlation between previously reported genetic risk for AF, AF in the presence of stroke, and cardioembolic stroke (Pearsonâs r=0.77 and 0.76, respectively, across SNPs with p < 4.4 Ă 10â4 in the prior AF meta-analysis). An AF PRS, adjusted for clinical AF risk factors, was associated with cardioembolic stroke (odds ratio (OR) per standard deviation (sd) = 1.40, p = 1.45Ă10â48), explaining âŒ20% of the heritable component of cardioembolic stroke risk. The AF PRS was also associated with stroke of undetermined cause (OR per sd = 1.07, p = 0.004), but no other primary stroke subtypes (all p > 0.1).ConclusionsGenetic risk for AF is associated with cardioembolic stroke, independent of clinical risk factors. Studies are warranted to determine whether AF genetic risk can serve as a biomarker for strokes caused by AF.</jats:sec
Mapping charge capture and acceleration in a plasma wakefield of a proton bunch using variable emittance electron beam injection
In the Phase 2 of the AWAKE first experimental run (from May to November 2018), an electron beam was used to probe and test proton-driven wakefield accelera-tion in a rubidium plasma column. The witness electron bunches were produced using an RF-gun equipped with a CsâTe photocathode illuminated by a tailorable ultrafast ultraviolet (UV) laser pulse. The construction of the UV beam optical system enabled appropriate transverse beam shaping and control of its pulse duration, size, and position on the photocathode, as well as time delay with respect to the ionizing laser pulse that seeds the plasma wakefields in the proton bunches. Variable photocathode illumination provided the required flexibility to produce electron bunches with variable charge, emittance, and injection trajectory into the plasma column. In this work, we analyze the overall charge capture and shot-to-shot reproducibility of the proton-driven plasma wakefield accelerator with various UV illumination and electron bunch injection parameters.In the Phase 2 of the AWAKE first experimental run (from May to November 2018), an electron beam was used to probe and test proton-driven wakefield acceleration in a rubidium plasma column. In this work, we analyze the overall charge capture and shot-to-shot reproducibility of the proton-driven plasma wakefield accelerator with various electron bunch injection parameters. The witness electron bunches were produced using an RF-gun equipped with a Cs2Te photocathode illuminated by a tailorable ultrafast deep ultraviolet (UV) laser pulse. The construction of the UV beam optical system enabled appropriate transverse beam shaping and control of its pulse duration, size, and position on the photocathode, as well as time delay with respect to the ionizing laser pulse that seeds the plasma wakefields in the proton bunches. Variable photocathode illumination provided the required flexibility to produce electron bunches with variable charge, emittance, and injection trajectory into the plasma column. We demonstrate charge capture rates exceeding 15% (40 pC of GeV accelerated charge for a 385 pC injected electron bunch) under optimized electron injection conditions
To Alfred Deakin
To access publisher full text version of this article. Please click on the hyperlink in Additional Links fieldOBJECTIVE: To find sequence variants that associate with the risk for ischemic stroke (IS), we performed a genome-wide association study. METHODS: We genotyped 1,661 Icelandic IS patients and 10,815 control subjects using the Infinium HumanHap300 chip (Illumina, San Diego, CA). A total of 310,881 single nucleotide polymorphisms (SNPs) were tested for association with IS, and the most significant signals were replicated in two large European IS sample sets (2,224 cases/2,583 control subjects). Two SNPs, rs2200733 and rs10033464, were tested further in additional European IS samples (2,327 patients and 16,760 control subjects). RESULTS: In the Icelandic samples and the two replication sets combined, rs2200733 associated significantly with cardioembolic stroke (CES) (odds ratio [OR], 1.54; p = 8.05 x 10(-9)). No other variants associated with IS or any of its subtypes. rs2200733 associated significantly with IS in all sample sets combined (OR, 1.26; p = 2.18 x 10(-10)), and both rs2200733 and its neighbour, rs10033464 associated strongly with CES (rs2200733: OR, 1.52; p = 5.8 x 10(-12); rs10033464: OR, 1.27; p = 6.1 x 10(-4)). Interestingly, rs2200733 also showed significant association to IS not classified as CES. INTERPRETATION: We discovered that variants previously shown to associate with atrial fibrillation (AF), rs2200733 and rs10033464, significantly associated with IS, with the strongest risk for CES. The association with noncardiogenic stroke is intriguing and suggests that atrial fibrillation may be underdiagnosed in patients presenting with stroke. This discovery may have implications for workup and treatment of IS
The AWAKE Run 2 Programme and Beyond
Plasma wakefield acceleration is a promising technology to reduce the size of particle accelerators. The use of high energy protons to drive wakefields in plasma has been demonstrated during Run 1 of the AWAKE programme at CERN. Protons of energy 400 GeV drove wakefields that accelerated electrons to 2 GeV in under 10 m of plasma. The AWAKE collaboration is now embarking on Run 2 with the main aims to demonstrate stable accelerating gradients of 0.5-1 GV/m, preserve emittance of the electron bunches during acceleration and develop plasma sources scalable to 100s of metres and beyond. By the end of Run 2, the AWAKE scheme should be able to provide electron beams for particle physics experiments and several possible experiments have already been evaluated. This article summarises the programme of AWAKE Run 2 and how it will be achieved as well as the possible application of the AWAKE scheme to novel particle physics experiments.LPA
The AWAKE Run 2 Programme and Beyond
Plasma wakefield acceleration is a promising technology to reduce the size of particle accelerators. The use of high energy protons to drive wakefields in plasma has been demonstrated during Run 1 of the AWAKE programme at CERN. Protons of energy 400 GeV drove wakefields that accelerated electrons to 2 GeV in under 10 m of plasma. The AWAKE collaboration is now embarking on Run 2 with the main aims to demonstrate stable accelerating gradients of 0.5-1 GV/m, preserve emittance of the electron bunches during acceleration and develop plasma sources scalable to 100s of metres and beyond. By the end of Run 2, the AWAKE scheme should be able to provide electron beams for particle physics experiments and several possible experiments have already been evaluated. This article summarises the programme of AWAKE Run 2 and how it will be achieved as well as the possible application of the AWAKE scheme to novel particle physics experiments.De fyra första författarna delar förstaförfattarskapet.</p