435 research outputs found
Towards an Agile Biodigital Architecture: Supporting a Dynamic Evolutionary and Developmental View of Architecture
Architecture and biology are fields of high complexity. Generative design approaches provide access to continuously increasing complexity in design. Some of these methods are based on biological principles but usually do not communicate the conceptual base necessary to appropriately reflect the input from biology into architecture. To address this, we propose a model for analysis and design of architecture based on a multistaged integrated design process that extends the common morphological process in digital morphogenesis with a typology-based ontological model. Biomimetics, an emerging field to strategically search for information transfer from biology to technological application, will assist in delivering a frame of reference and methodology for establishing valid analogies between the different realms as well as integration of the biological concept into a larger framework of analogy to biological processes. As the biomimetic translation of process and systems information promises more radical innovation, this chapter focuses on the dynamic perspectives provided by biological development and evolution to model the complexity of architecture. The proposed process was used to inform five parallel workshops to explore dynamic biological concepts in design. The potential of the process to investigate biomimetic processes in architecture is then discussed, and future work is outlined
Variance reduction via deflation with local coherence
In large enough volumes, translation-averaging for quark-line connected
diagrams reduces the variance inversely proportional to the volume. Stochastic
estimators which implement translation averaging however introduce new sources
of fluctuations, which in some cases can be relatively large. In this work, we
explore whether inexact deflation subspaces can be used to improve the
precision of the isovector vector correlators. We perform numerical experiments
with non-perturbatively -improved Wilson
fermions and measure the relative contribution from the deflation subspace to
the central value and the corresponding variance
The oceanic anthropogenic CO2sink: Storage, air-sea fluxes, and transports over the industrial era
This study presents a new estimate of the oceanic anthropogenic CO2(Cant) sink over the industrial era (1780 to present), from assimilation of potential temperature, salinity, radiocarbon, and CFC-11 observations in a global steady state ocean circulation inverse model (OCIM). This study differs from previous data-based estimates of the oceanic Cant sink in that dynamical constraints on ocean circulation are accounted for, and the ocean circulation is explicitly modeled, allowing the calculation of oceanic Cant storage, air-sea fluxes, and transports in a consistent manner. The resulting uncertainty of the OCIM-estimated Cant uptake, transport, and storage is significantly smaller than the comparable uncertainty from purely data-based or model-based estimates. The OCIM-estimated oceanic Cant storage is 160–166 PgC in 2012, and the oceanic Cant uptake rate averaged over the period 2000–2010 is 2.6 PgC yr−1 or about 30% of current anthropogenic CO2 emissions. This result implies a residual (primarily terrestrial) Cant sink of about 1.6 PgC yr−1 for the same period. The Southern Ocean is the primary conduit for Cant entering the ocean, taking up about 1.1 PgC yr−1 in 2012, which represents about 40% of the contemporary oceanic Cant uptake. It is suggested that the most significant source of remaining uncertainty in the oceanic Cant sink is due to potential variability in the ocean circulation over the industrial era
VR in Nursing Facilities - A randomized controlled multicenter pilot study analyzing the changes in the state of mind of seniors in nursing facilities through the viewing of 360° videos
Context: VR as an application to enhance well-being is sparsely researched in the elderly population. The aim of the pilot study was to analyze the effect of 360° videos of different categories on the state of mind of seniors in nursing facilities. Furthermore, for the implementation in everyday life, the usability of the system and the experience for seniors should be evaluated. Methods: The VR experience was used as a supplement to existing care services in three facilities on eight subjects. Mood state was assessed using the Questionnaire for the Assessment of Happiness before and after the intervention. Demographic data and technology acceptance were collected beforehand. After the intervention, subjects were interviewed about confounding factors and side effects, and nursing home staff were interviewed about the usability of the system and the organizational concept of implementation. Results: There was a positive effect on state of mind. Gender and spatial mobility turned out to be influencing factors. Categories containing people, animals and action achieved the highest increases in the state of mind. Interest in using technical devices correlated negatively with the change in mood state. None of the subjects found the VR goggles distracting or reported motion sickness. Very good usability was indicated by the employees. Conclusion: A very high willingness to use this technology was found among nursing staff and residents. The tendencies of the positive effect of 360° videos on the state of mind, as well as differentiation based on the mentioned characteristics gender and spatial mobility, should be verified by a larger sample to empirically validate the use of this technology to increase the quality of life
The state of the Martian climate
60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes
STAT3 regulated ARF expression suppresses prostate cancer metastasis.
Prostate cancer (PCa) is the most prevalent cancer in men. Hyperactive STAT3 is thought to be oncogenic in PCa. However, targeting of the IL-6/STAT3 axis in PCa patients has failed to provide therapeutic benefit. Here we show that genetic inactivation of Stat3 or IL-6 signalling in a Pten-deficient PCa mouse model accelerates cancer progression leading to metastasis. Mechanistically, we identify p19(ARF) as a direct Stat3 target. Loss of Stat3 signalling disrupts the ARF-Mdm2-p53 tumour suppressor axis bypassing senescence. Strikingly, we also identify STAT3 and CDKN2A mutations in primary human PCa. STAT3 and CDKN2A deletions co-occurred with high frequency in PCa metastases. In accordance, loss of STAT3 and p14(ARF) expression in patient tumours correlates with increased risk of disease recurrence and metastatic PCa. Thus, STAT3 and ARF may be prognostic markers to stratify high from low risk PCa patients. Our findings challenge the current discussion on therapeutic benefit or risk of IL-6/STAT3 inhibition.Lukas Kenner and Jan Pencik are supported by FWF, P26011 and the Genome Research-Austria project “Inflammobiota” grants. Helmut Dolznig is supported by the Herzfelder Family Foundation and the Niederösterr. Forschungs-und Bildungsges.m.b.H (nfb). Richard Moriggl is supported by grant SFB-F2807 and SFB-F4707 from the Austrian Science Fund (FWF), Ali Moazzami is supported by Infrastructure for biosciences-Strategic fund, SciLifeLab and Formas, Zoran Culig is supported by FWF, P24428, Athena Chalaris and Stefan Rose-John are supported by the Deutsche Forschungsgemeinschaft (Grant SFB 877, Project A1and the Cluster of Excellence --“Inflammation at Interfaces”). Work of the Aberger lab was supported by the Austrian Science Fund FWF (Projects P25629 and W1213), the European FP7 Marie-Curie Initial Training Network HEALING and the priority program Biosciences and Health of the Paris-Lodron University of Salzburg. Valeria Poli is supported by the Italian Association for Cancer Research (AIRC, No IG13009). Richard Kennedy and Steven Walker are supported by the McClay Foundation and the Movember Centre of Excellence (PC-UK and Movember). Gerda Egger is supported by FWF, P27616. Tim Malcolm and Suzanne Turner are supported by Leukaemia and Lymphoma Research.This is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/10.1038/ncomms873
Assessment of Global Ocean Biogeochemistry Models for Ocean Carbon Sink Estimates in RECCAP2 and Recommendations for Future Studies
The ocean is a major carbon sink and takes up 25%–30% of the anthropogenically emitted CO2. A state-of-the-art method to quantify this sink are global ocean biogeochemistry models (GOBMs), but their simulated CO2 uptake differs between models and is systematically lower than estimates based on statistical methods using surface ocean pCO2 and interior ocean measurements. Here, we provide an in-depth evaluation of ocean carbon sink estimates from 1980 to 2018 from a GOBM ensemble. As sources of inter-model differences and ensemble-mean biases our study identifies (a) the model setup, such as the length of the spin-up, the starting date of the simulation, and carbon fluxes from rivers and into sediments, (b) the simulated ocean circulation, such as Atlantic Meridional Overturning Circulation and Southern Ocean mode and intermediate water formation, and (c) the simulated oceanic buffer capacity. Our analysis suggests that a late starting date and biases in the ocean circulation cause a too low anthropogenic CO2 uptake across the GOBM ensemble. Surface ocean biogeochemistry biases might also cause simulated anthropogenic fluxes to be too low, but the current setup prevents a robust assessment. For simulations of the ocean carbon sink, we recommend in the short-term to (a) start simulations at a common date before the industrialization and the associated atmospheric CO2 increase, (b) conduct a sufficiently long spin-up such that the GOBMs reach steady-state, and (c) provide key metrics for circulation, biogeochemistry, and the land-ocean interface. In the long-term, we recommend improving the representation of these metrics in the GOBMs
MACE: Joint Deliverable "Evaluation of the MACE system"
Stefaner, M., Wolpers, M., Memmel, M., Duval, E., Specht, M., Börner, D., Gruber, M., De Jong, T., Giretti, A., & Klemke, R. (2009). MACE: Joint Deliverable "Evaluation of the MACE system". MACE-project.This deliverable presents the evaluation results of the MACE project1. MACE integrates large amounts of technology enhanced learning contents and metadata in the domain of architecture, in order to create a framework for the integration of multiple content sources, content enrichment with different metadata types, and improved access to these existing contents.MAC
Changes of microrna levels in plasma of patients with rectal cancer during chemoradiotherapy
Since the response to chemoradiotherapy in patients with locally advanced rectal cancer is heterogeneous, valid biomarkers are needed to monitor tumor response. Circulating microRNAs are promising candidates, however analyses of circulating microRNAs in rectal cancer are still rare. 111 patients with rectal cancer and 46 age-matched normal controls were enrolled. The expression levels of 30 microRNAs were analyzed in 17 pre-treatment patients’ plasma samples. Differentially regulated microRNAs were validated in 94 independent patients. For 52 of the 94 patients a paired comparison between pre-treatment and post-treatment samples was performed. miR-17, miR-18b, miR-20a, miR-31, and miR-193a_3p, were significantly downregulated in pre-treatment plasma samples of patients with rectal cancer (p < 0.05). miR-29c, miR-30c, and miR-195 showed a trend of differential regulation. After validation, miR-31 and miR-30c were significantly deregulated by a decrease of expression. In 52 patients expression analyses of the 8 microRNAs in matched pre-treatment and post-treatment samples showed a significant decrease for all microRNAs (p < 0.05) after treatment. Expression levels of miR-31 and miR-30c could serve as valid biomarkers if validated in a prospective study. Plasma microRNA expression levels do not necessarily represent miRNA expression levels in tumor tissue. Also, expression levels of microRNAs change during multimodal therapy
PowerCube: Design and Development of a 100 W Origami-Inspired Deployable Solar Array for NanoSatellites
The rapid growth of the capabilities of small satellites have sparked the need for high-power deployable solar arrays. PowerCube addresses this need by proposing a unique solution that can generate up to 100W from a 1U stowed volume. At the core of this design is an innovative origami-inspired architecture, combined with advanced dual-matrix composite materials, to achieve excellent packaging efficiency and self-deployment capabilities. This paper provides an overview of the design of the system and presents the key analyses and breadboarding activities that supported its development. The next milestones in the ESA-funded PowerCube project are discussed, focusing on its qualification campaign. The paper is concluded by an overview of the PowerSat IOD mission, which will demonstrate a high-power 3U satellite, powered by the PowerCube solar array
- …
