21 research outputs found

    Technology and Methodology for the Production of High Quality Polymer Filler and Super-Pozzolan from Fly Ash

    Get PDF
    A novel method for producing fly ash material with a range of particle sizes from about 2.0 to about 4.0 ÎŒm is provided utilizing superplasticizers. The method produces fly ash material suitable for use as filler material in the plastics industry and super pozzolan for the concrete industry

    Froth Flotation Method for Recovery of Ultra-Fine Constituent

    Get PDF
    A froth flotation method and apparatus for the recovery of ultra-fine constituent are provided. The apparatus includes a flotation column having a drain for withdrawing tailings and underflow and an overflow for recovering the selected ultra-fine constituent. A mechanism is provided for delivering a wash medium to an upper portion of the column as well as for delivering diffuse air to a lower portion of the column. A slurry including the constituent to be recovered is received and conditioned within a tank that is connected by means of a feed line to the column. Additionally, a mechanism is provided for dissolving air in the slurry in the conditioning tank. Further, one or two matrixes may be mounted across the flotation column to further improve recovery. The method broadly includes the steps of (1) dissolving air in the slurry in the conditioning tank; (2) feeding the slurry through the feed line into an intermediate portion of the flotation column; (3) adding a reagent to the slurry that renders the selected constituent hydrophobic; (4) establishing and maintaining a downwardly flowing stream of wash medium in the flotation column; (5) establishing and maintaining an upwardly moving stream of diffuse air originating at a lower portion of the flotation column; and (6) recovering the selected ultra-fine constituent and diffuse air from the upper portion of the column

    Rare Earth-Bearing Particles in Fly Ash Carbons: Examples from the Combustion of Eastern Kentucky Coals

    Get PDF
    Graphitic carbons from the combustion of bituminous coals and, perhaps, other coal ranks, tend to capture iron and a number of hazardous elements, including As, Hg, and Se. Rare earth elements in fly ashes occur in minerals, such as monazite, xenotime, and davidite. They also occur in sub-nm particles, probably in a mineral form, within the Al–Si glass on the investigated fly ashes. Just as graphitic carbons can capture Fe and hazardous elements, the carbons surrounding the fly ash glass and magnetic particles captures or encapsulates a broad suite of rare earth elements

    Method for Improving the Pozzolanic Character of Fly Ash

    Get PDF
    A method for improving the pozzolanic character of fly ash includes the steps of first hydraulically classifying and then flotation separating the fly ash in order to reduce particle size distribution and remove carbon. The method also includes the steps of spiral concentrating separated coarse particles to recover iron, pyrite and marcasite and screening the fly ash to remove ultra-light carbon and plant debris

    Beneficial Reuse of Industrial CO\u3csub\u3e2\u3c/sub\u3e Emissions Using a Microalgae Photobioreactor: Waste Heat Utilization Assessment

    Get PDF
    Microalgae are a potential means of recycling CO2 from industrial point sources. With this in mind, a novel photobioreactor (PBR) was designed and deployed at a coal-fired power plant. To ascertain the feasibility of using waste heat from the power plant to heat algae cultures during cold periods, two heat transfer models were constructed to quantify PBR cooling times. The first, which was based on tabulated data, material properties and the physical orientation of the PBR tubes, yielded a range of heat transfer coefficients of 19–64 W m−2 K−1 for the PBR at wind speeds of 1–10 m s−1. The second model was based on data collected from the PBR and gave an overall heat transfer coefficient of 24.8 W m−2 K−1. Energy penalties associated with waste heat utilization were found to incur an 18%–103% increase in energy consumption, resulting in a 22%–70% reduction in CO2 capture for the scenarios considered. A techno-economic analysis showed that the cost of heat integration equipment increased capital expenditures (CAPEX) by a factor of nine and increased biomass production costs by a factor of three. Although the scenario is thermodynamically feasible, the increase in CAPEX incurs an increase in biomass production cost that is economically untenable

    Notes on the Potential for the Concentration of Rare Earth Elements and Yttrium in Coal Combustion Fly Ash

    Get PDF
    Certain Central Appalachian coals, most notably the Fire Clay coal with a REY-enriched volcanic ash fall tonstein, are known to be enriched in rare earth elements. The Fire Clay tonstein has a greater contribution to the total coal + parting REY than would be inferred from its thickness, accounting for about 20%–35% of the REY in the coal + parting sequence. Underground mining, in particular, might include roof and floor rock and the within-seam partings in the mined product. Beneficiation, necessary to meet utility specifications, will remove some of the REY from the delivered product. In at least one previously published example, even though the tonstein was not present in the Fire Clay coal, the coal was enriched in REY. In this case, as well as mines that ship run-of-mine products to the utility, the shipped REY content should be virtually the same as for the mined coal. At the power plant, however, the delivered coal will be pulverized, generally accompanied by the elimination of some of the harder rock, before it is fired into the boiler. Overall, there are a wide range of variables between the geologic sample at the mine and the power plant, any or all of which could impact the concentration of REY or other critical materials in the coal combustion products

    Capture and Recycle of Industrial CO\u3csub\u3e2\u3c/sub\u3e Emissions Using Mircoalgae

    Get PDF
    A novel cyclic flow photobioreactor (PBR) for the capture and recycle of CO2 using microalgae was designed and deployed at a coal-fired power plant (Duke Energy’s East Bend Station). The PBR was operated continuously during the period May–September 2015, during which algae productivity of typically 0.1–0.2 g/(L day) was obtained. Maximum CO2 capture efficiency was achieved during peak sunlight hours, the largest recorded CO2 emission reduction corresponding to a value of 81 % (using a sparge time of 5 s/min). On average, CO2 capture efficiency during daylight hours was 44 %. The PBR at East Bend Station also served as a secondary scrubber for NOx and SOx, removing on average 41.5 % of the NOx and 100 % of the SOx from the flue gas. The effect of solar availability and self-shading on a rudimentary digital model of the cyclic flow PBR was examined using Autodesk Ecotect Analysis software. Initial results suggest that this is a promising tool for the optimization of PBR layout with respect to the utilization of available solar radiation

    Capture and Recycle of Industrial CO\u3csub\u3e2\u3c/sub\u3e Emissions Using Mircoalgae

    Get PDF
    A novel cyclic flow photobioreactor (PBR) for the capture and recycle of CO2 using microalgae was designed and deployed at a coal-fired power plant (Duke Energy’s East Bend Station). The PBR was operated continuously during the period May–September 2015, during which algae productivity of typically 0.1–0.2 g/(L day) was obtained. Maximum CO2 capture efficiency was achieved during peak sunlight hours, the largest recorded CO2 emission reduction corresponding to a value of 81 % (using a sparge time of 5 s/min). On average, CO2 capture efficiency during daylight hours was 44 %. The PBR at East Bend Station also served as a secondary scrubber for NOx and SOx, removing on average 41.5 % of the NOx and 100 % of the SOx from the flue gas. The effect of solar availability and self-shading on a rudimentary digital model of the cyclic flow PBR was examined using Autodesk Ecotect Analysis software. Initial results suggest that this is a promising tool for the optimization of PBR layout with respect to the utilization of available solar radiation

    Reconciling Himalayan midcrustal discontinuities: The Main Central thrust system

    Get PDF
    The occurrence of thrust-sense tectonometamorphic discontinuities within the exhumed Himalayan metamorphic core can be explained as part of the Main Central thrust system. This imbricate thrust structure, which significantly thickened the orogenic midcrustal core, comprises a series of thrust-sense faults that all merge into a single detachment. The existence of these various structures, and their potential for complex overprinting along the main detachment, may help explain the contention surrounding the definition, mapping, and interpretation of the Main Central thrust. The unique evolution of specific segments of the Main Central thrust system along the orogen is interpreted to be a reflection of the inherent basement structure and ramp position, and structural level of exposure of the mid-crust. This helps explain the variation in the timing and structural position of tectonometamorphic discontinuities along the length of the mountain belt

    Checklist das Spermatophyta do Estado de SĂŁo Paulo, Brasil

    Full text link
    corecore